Supplementary Materials

Theoretical justification for identifiability gain computation

Yulin Wang, Hongyu Miao

Lemma 1. Given a DAG $G = (V, E)$ and an observed node V_i and an unobserved node V_u in $O^{(k)}$, if only V_u becomes observed in $O^{(k+1)}$, then the identifiability equation $IE(V_i, V_u)$ is non-redundant if there exists a Wright’s path of length 1 connecting V_i and V_u.

Proof. Without loss of generality, assume that there exists $k+1$ ($k \geq 0$) Wright’s paths connecting V_i and V_u. The path of length 1 is just the edge directly from V_i to V_u associated with coefficient c_{ui}, and the lengths of the remaining k Wright’s paths are assumed greater than 1. Let P_{k+1} denote the Wright’s path of length 1, P_l ($l = 1, 2, \cdots, k$) the rest of the Wright’s paths, and WP the Wright’s path coefficient of a path, then the newly-added identifiability equation is $IE(V_i, V_u): \text{Cov}(V_i, V_u) = \sum_{l=1}^{k} WP_l + WP_{k+1}$ according to Wright’s path coefficient method [1, 2]. WP_{k+1} can be simply replaced with c_{ui} to obtain $IE(V_i, V_u): \text{Cov}(V_i, V_u) = \sum_{l=1}^{k} WP_l + c_{ui}$. Since V_j is unobserved in $O^{(k)}$, all the identifiability equations generated from $O^{(k)}$ do not contain a term that consists of only parameter c_{ui}. Therefore, $IE(V_i, V_u)$ cannot be expressed as a linear combination of all the identifiability equations from $O^{(k)}$. That is, $IE(V_i, V_u)$ is non-redundant if there exists a Wright’s path of length 1 connecting V_i and V_u. □
Lemma 2. If a detour-path P has one or more exclusive upstream node, the Wright’s coefficient WP of P is globally identifiable.

Proof. Without loss of generality, let V_i, V_j and V_k denote an exclusive upstream node, the downstream node, and the collider node of P, respectively. Let $S_{WP_{ki}}$ denote the coefficient sum of Wright’s paths between V_i and V_k, $S_{DWP_{jk}}$ the Wright’s path coefficient of P, and $S_{CWP_{jk}}$ the Wright’s path coefficient sum of all the Wright’s paths between V_j and V_k that collide with the path from V_i to V_k. Since V_i, V_j and V_k are observed nodes, one can get the following three identifiability equations:

$$IE(V_i, V_k): \text{Cov}(V_i, V_k) = S_{WP_{ii}},$$
$$IE(V_i, V_j): \text{Cov}(V_i, V_j) = S_{WP_{ki}} \cdot S_{DWP_{jk}},$$
$$IE(V_j, V_k): \text{Cov}(V_j, V_k) = S_{DWP_{jk}} + S_{CWP_{jk}}.$$

One can tell from the above three equations that $S_{WP_{ii}}$, $S_{DWP_{jk}}$ and $S_{CWP_{jk}}$ have a unique solution and are thus globally identifiable. Therefore, the Wright’s coefficient WP of P is globally identifiable.

Lemma 3. For a group of intersecting detour-paths, if the number of the shared upstream nodes in S_{SUN} is equal to or greater than the number of intersecting detour-paths in S_{IDP}, then the Wright’s coefficient of each detour-path in S_{IDP} is globally identifiable.

Proof. Without loss of generality, assume that there are $n(n \geq m)$ shared upstream nodes V_i, V_2, \ldots, V_n in S_{SUN} and there are m detour-paths P_1, P_2, \ldots, P_m in S_{IDP}. Let $V_{k_1}, V_{k_2}, \ldots, V_{k_m}$ denote the m collider nodes respectively, and V_j denote
the downstream node of P_1, P_2, \ldots, P_m. Consider an upstream node V_i, and a collider
node V_k, and there exists a path from V_i to V_k. We can get an identifiability
equation $IE(V_i, V_k): Cov(V_i, V_k) = S_{WP,i,k}$. One can tell from $IE(V_i, V_k)$ that
$S_{WP,i,k}$ is globally identifiable.

Similarly, one can get that all the Wright’s path coefficients $S_{WP,i,k}$ between
$V_i, V_{i_1}, \ldots, V_{i_n}$ and $V_k, V_{k_1}, \ldots, V_{k_m}$ are globally identifiable. Then we consider an
upstream node V_i and two collider nodes V_k, V_{k_1}, where V_i has directed paths to
V_k and V_{k_1}, respectively. We can get an identifiability equation
$IE(V_k, V_{k_1}): Cov(V_k, V_{k_1}) = S_{WP,k} \cdot S_{WP,k_1}$. Because $S_{WP,i,k}$ and $S_{WP,k}$
are globally identifiable, one can tell that the identifiability equation $IE(V_k, V_{k_1})$ is
redundant. Similarly, one can tell that all the identifiability equations between
$V_{k_1}, V_{k_2}, \ldots, V_{k_m}$ are redundant.

Finally, we consider the identifiability equations between $V_i, V_{i_1}, \ldots, V_{i_n}$ and V_j.
We can get n identifiability equations between $V_i, V_{i_1}, \ldots, V_{i_n}$ and V_j. These
equations contain all the Wright’s path coefficients from $V_i, V_{i_1}, \ldots, V_{i_n}$ to
$V_{i_1}, V_{i_2}, \ldots, V_{i_m}$, and m Wright’s path coefficients from each node of $V_{i_1}, V_{i_2}, \ldots, V_{i_m}$
to V_j. Since each Wright’s path coefficient $S_{WP,k}$ from $V_{i_1}, V_{i_2}, \ldots, V_{i_m}$ to
$V_{k_1}, V_{k_2}, \ldots, V_{k_m}$ is globally identifiable, the n identifiability equations contains only
m unknown Wright’s path coefficients. One can tell from $n \geq m$ that each Wright’s
path coefficient from $V_{k_1}, V_{k_2}, \ldots, V_{k_m}$ to V_j is globally identifiable. That is, the
Wright’s coefficient of each detour-path in S_{IDP} is globally identifiable.
Lemma 4. Given a DAG $G = (V, E)$, an observed node V_i, and an unobserved node V_u in $O^{(k)}$, if only V_u becomes observed in $O^{(k+1)}$, there exist two cases:

1) each Wright’s path between V_i and V_u passes at least one observed node other than V_i and V_u when none of the Wright’s paths between V_i and V_u contains detour-paths;

2) each Wright’s path between V_i and V_u passes at least one observed node other than V_i and V_u, and the Wright’s coefficient of each detour-path between V_i and V_u is globally identifiable in $O^{(k)}$ when certain Wright’s paths between V_i and V_u contain detour-paths.

Then the identifiability equation $IE(V_i, V_u)$ is redundant if and only if one of the above conditions holds.

Proof. We first prove the sufficient condition for the first case. Assume that V_i is an ancestor node of V_u, and there exist m Wright’s paths between V_i and V_u, and each path passes an observed node that is not a collider node of the detour-paths, denoted by V_1, V_2, \ldots, V_m (note that such nodes are in $O^{(k)}$ and thus also in $O^{(k+1)}$), respectively.

Let $S_{-WP_{pq}}$ denote the sum of all the Wright’s path coefficients between V_p and V_q, i.e., $S_{-WP_{pq}} = \sum_r WP_r$; then we can get C_{m+1}^2 identifiability equations from $O^{(k)}$ because one identifiability equation can be generated for each pair of d-connected observed nodes [3, 4]. There are C_m^2 identifiability equations between any two nodes of V_1, V_2, \ldots, V_m and m identifiability equations between V_i and each of V_1, V_2, \ldots, V_m. Although there exist some Wright’s paths among V_1, V_2, \ldots, V_m that do not pass V_i, here we ignore this case and focus only on the case that all the Wright’s
paths among V_1, V_2, \ldots, V_m pass V_i. Now we can get the following identifiability equations,

$$IE(V_i, V_1): \text{Cov}(V_i, V_1) = S_{WP_{ii}}, \quad IE(V_i, V_2): \text{Cov}(V_i, V_2) = S_{WP_{2i}}, \quad \ldots,$$

$$IE(V_i, V_m): \text{Cov}(V_i, V_m) = S_{WP_{mi}}.$$

Consider an identifiability equation $IE(V_p, V_q)$ between two nodes $V_p, V_q \in \{V_1, V_2, \ldots, V_m\}$, we get

$$IE(V_p, V_q): \text{Cov}(V_p, V_q) = S_{WP_{pq}} = S_{WP_{ip}} \cdot S_{WP_{pq}} = \text{Cov}(V_i, V_p) \cdot \text{Cov}(V_i, V_q).$$

Since $IE(V_p, V_q)$ does not contain any unknown parameters, it is redundant. This means that these C^2_m identifiability equations among V_1, V_2, \ldots, V_m can be ignored given the existing identifiability equations in $O^{(k)}$. When V_u becomes observed in $O^{(k+1)}$, the following $k+1$ identifiability equations are newly added

$$IE(V_u, V_1): \text{Cov}(V_u, V_1) = S_{WP_{1u}}, \quad IE(V_u, V_2): \text{Cov}(V_u, V_2) = S_{WP_{2u}}, \quad \ldots,$$

$$IE(V_u, V_m): \text{Cov}(V_u, V_m) = S_{WP_{mu}}, \quad IE(V_u, V_i): \text{Cov}(V_u, V_i) = S_{WP_{iu}}.$$

Consider an observed node $V_i \in \{V_1, V_2, \ldots, V_m\}$. If some Wright’s paths between V_i and V_u pass V_i, then these paths can be divided into two parts: one between V_i and V_i, and the other between V_i and V_u. The Wright’s path coefficient sum of the first part and the second part are just $S_{WP_{ii}}$ and $S_{WP_{iu}}$, respectively. Then

$$IE(V_i, V_1): \text{Cov}(V_i, V_1) = S_{WP_{1i}} = S_{WP_{iu}} + \sum_{p=1, p \neq i}^{m} S_{WP_{1i}} \cdot S_{WP_{ip}} \cdot S_{WP_{pu}}.$$

Substitute $IE(V_i, V_1): \text{Cov}(V_i, V_1) = S_{WP_{1i}}$ and $IE(V_i, V_p): \text{Cov}(V_i, V_p) = S_{WP_{ip}}$ into the equation above, we get

$$IE(V_u, V_i): \text{Cov}(V_u, V_i) = S_{WP_{iu}} = \sum_{p=1, p \neq i}^{m} \text{Cov}(V_i, V_1) \cdot \text{Cov}(V_i, V_p) \cdot S_{WP_{pu}}.$$
There are \(m \) equations between \(V_u \) and \(V_i \), and \(m \) unknown terms \(S_{WP_{il}} (l = 1, 2, \cdots, m) \) in all the identifiability equations \(IE(V_u, V_i) \). Furthermore, all the identifiability equations \(IE(V_u, V_i) \) are linearly independent. One can tell that all the unknown terms \(S_{WP_{il}} \) can be uniquely determined from \(IE(V_u, V_i) \) \((l = 1, 2, \cdots, m) \).

Now we consider the identifiability equation \(IE(V, V_u) \),

\[
IE(V, V_u) : \text{Cov}(V, V_u) = S_{WP_{iu}} = \sum_{l=1}^{m} S_{WP_{il}} \cdot S_{WP_{lu}} = \sum_{l=1}^{m} \text{Cov}(V, V_{i}) \cdot S_{WP_{lu}}.
\]

Since \(S_{WP_{iu}} \) can be uniquely determined by equations \(IE(V_u, V_{i}) (l = 1, 2, \cdots, m) \), \(IE(V, V_u) \) contains no unknown parameters and it can be expressed as a linear combination of other identifiability equations. Therefore, \(IE(V, V_u) \) is redundant.

Thus, the sufficient condition holds for the first case.

Next we prove the necessary condition for the first case by contradiction. Without loss of generality, assume that \(V_i \) is an ancestor node of \(V_u \) and \(IE(V, V_u) \) is redundant, but there exists a Wright’s path \(P_{iu} \) between \(V_i \) and \(V_u \) passes none of the observed nodes, while the other \(m \) Wright’s paths pass \(m \) observed nodes \(V_1, V_2, \cdots, V_m \), respectively. As before, we consider the case that all the Wright’s paths among \(V_1, V_2, \cdots, V_m \) pass \(V_i \) and ignore the case that some Wright’s paths among \(V_1, V_2, \cdots, V_m \) do not pass \(V_i \). Then we can get \(m \) identifiability equations between \(V_j \) and each of \(V_1, V_2, \cdots, V_m \) from \(O^{(k)} \), and ignore the \(C_m^2 \) identifiability equations among \(V_1, V_2, \cdots, V_m \). Moreover, we can get \(m + 1 \) new identifiability equations when \(V_j \) becomes observed in \(O^{(k+1)} \). Let \(WP_{iu} \) denote the Wright’s path coefficient of path \(P_{iu} \), then we have
\[IE(V_i, V_u) : \text{Cov}(V_i, V_u) = \sum_{l=1}^{m} S_{WP_{il} \cdot WP_{iu}} + \sum_{l=1}^{m} \text{Cov}(V_l, V_l) \cdot S_{-WP_{iu} + WP_{iu}}. \]

Because \(V_u \) is unobserved in \(o^{(k)} \), all the identifiability equations from \(o^{(k)} \) do not contain the term \(WP_{iu} \). Similarly, all the newly added identifiability equations except for \(IE(V_i, V_u) \) from \(o^{(k+1)} \) do not contain \(WP_{iu} \) because \(P_{iu} \) does not pass any observed node. This is, \(IE(V_i, V_u) \) contains the term \(WP_{iu} \) that does not appear in any other identifiability equations. Therefore, the identifiability equation \(IE(V_i, V_u) \) cannot be expressed as a linear combination of other identifiability equations, and thus \(IE(V_i, V_u) \) is not redundant, which contradicts to the assumption of \(IE(V_i, V_u) \) being redundant. Therefore, the necessary condition holds for the first case that none of the Wright’s paths between \(V_i \) and \(V_u \) contains detour-paths.

Then we prove the sufficient condition for the second case. Assume that \(V_i \) is an ancestor node of \(V_u \), and there exist \(m \) Wright’s paths that contain detour-paths and the Wright’s coefficient of each detour-path is globally identifiable in \(o^{(k)} \), and \(n \) Wright’s paths that do not contain detour-paths and pass at least one observed node other than \(V_i \) and \(V_u \). Let \(V_{k_p} (q = 1, 2, \cdots, m) \) denote the collider nodes of \(m \) Wright’s paths with detour-paths and let \(V_{k_p} (p = 1, 2, \cdots, n) \) denote the observed nodes of \(n \) Wright’s paths without detour-paths, respectively. Correspondingly, \(V_i \) is the upstream node and \(V_u \) is the downstream node of all the detour-paths. Similar to the first case, we can get \((m+n) \) non-redundant identifiability equations between \(V_i \) and all the nodes in \(V_{k_1}, V_{k_2}, \cdots, V_{k_m} \) and \(V_{k_1}, V_{k_2}, \cdots, V_{k_n} \) from \(o^{(k)} \), and \((m+n+1) \) new identifiability equations when \(V_u \) becomes observed in \(o^{(k+1)} \), and we have
\[IE(V_i, V_u) : \text{Cov}(V_i, V_u) = \sum_{l=1}^{n} \text{Cov}(V_i, V_{k_l}) \cdot S_{WP_{k_l u}} + \sum_{r=1}^{m} \text{Cov}(V_i, V_{k_r}) \cdot S_{DWP_{k_r u}}, \]

where \(S_{WP_{k_l u}} \) can be uniquely determined by \(IE(V_{u_l}, V_{k_l})(l = 1, 2, \ldots, n) \), and \(S_{DWP_{k_r u}} \) denotes the Wright’s path coefficient sum of all the detour-paths from \(V_{k_r} \) to \(V_u \). Because each detour-path is globally identifiable in \(O^{(i)} \) (i.e., \(S_{DWP_{k_r u}} \) is globally identifiable), one can tell that \(IE(V_i, V_u) \) does not contain any unknown parameters (i.e., \(IE(V_i, V_u) \) can be expressed as a linear combination of other identifiability equations), and thus \(IE(V_i, V_u) \) is redundant. Therefore, the sufficient condition holds for the second case.

Finally, we prove the necessary condition for the second case by contradiction. We assume that there exists a Wright’s path \(P_{iu} \) between \(V_i \) and \(V_u \) that passes no observed nodes or there exists one detour-path, the Wright’s coefficient of which is unidentifiable (note that there are only two cases: globally identifiable and unidentifiable for a detour-path), but \(IE(V_i, V_u) \) is redundant. Same as the first case, if there exists a Wright’s path \(P_{iu} \) between \(V_i \) and \(V_u \) passing no observed nodes, then \(IE(V_i, V_u) \) is not redundant. This contradicts to the assumption of \(IE(V_i, V_u) \) being redundant. Now consider the case that there exist one detour-path, the Wright’s coefficient of which is unidentifiable. Similar to the proof of the sufficient condition, we can get

\[IE(V_i, V_u) : \text{Cov}(V_i, V_u) = \sum_{l=1}^{n} \text{Cov}(V_i, V_{k_l}) \cdot S_{WP_{k_l u}} + \sum_{r=1}^{m} \text{Cov}(V_i, V_{k_r}) \cdot S_{WP_{k_r u}}. \]

If there exists one detour-path with an unidentifiable Wright’s coefficient (i.e., there exists one unidentifiable \(S_{DWP_{k_r u}} \), this means that the identifiability equation
$IE(V_i, V_u)$ contains one term that cannot be expressed as a linear combination of other identifiability equations, and thus $IE(V_i, V_u)$ is not redundant, which contradicts to the assumption of $IE(V_i, V_u)$ being redundant. Therefore, the necessary condition holds for the second case. In summary, the lemma holds. ■

Lemma 5. Given a DAG $G = (V, E)$, two d-connected observed nodes V_i and V_j, and an unobserved node V_u in $O^{(k)}$, if V_u is on a Wright’s path between V_i and V_j and only V_u becomes observed in $O^{(k+1)}$, there exist two cases:

1) each Wright’s path between V_i and V_j passes at least one observed node other than V_i and V_j when none of the Wright’s paths between V_i and V_j contains detour-paths;

2) each Wright’s path between V_i and V_j passes at least one observed node other than V_i and V_j, and the Wright’s coefficient of each detour-path between V_i and V_j is globally identifiable in $O^{(k)}$ when certain Wright’s paths between V_i and V_j contain detour-paths.

Then one of the two identifiability equations $IE(V_i, V_u)$ and $IE(V_j, V_u)$ is redundant if and only if one of the above conditions holds.

Proof. We can get the identifiability equation $IE(V_i, V_j)$ from $O^{(k)}$. After V_u becomes observed in $O^{(k+1)}$, two new identifiability equations $IE(V_i, V_u)$ and $IE(V_j, V_u)$ can be obtained. Similar to Lemma 4, $IE(V_i, V_j)$ can be expressed as a linear combination of other identifiability equations. This means that one of $IE(V_i, V_u)$ and $IE(V_j, V_u)$ can also be expressed as a linear combination of other identifiability equations, i.e., one of the identifiability equations $IE(V_i, V_u)$, $IE(V_j, V_u)$ is
Theorem 1. Given a DAG $G = (V, E)$ and an unobserved node V_i in an observation strategy O, let G' denote the sub-graph after the edge-removal operation. Then the identifiability gain is $g(V_i, O) = N_w - N_r$, where N_w denotes the total number of the observed nodes that are connected with V_i via any Wright’s path in graph G', and N_r denotes the number of redundant identifiability equations in graph G'.

Proof. Because G is a DAG, all the nodes of G except for V_i can be classified into three sets: anc_i, des_i and rel_i. After V_i becomes observed, the number of newly-added identifiability equations is the sum of the numbers of observed nodes that are d-connected with V_i in anc_i, des_i or rel_i [3, 4]. Also, let $S_{WP_{pq}}$ denote the sum of all the Wright’s path coefficients between node V_p and node V_q.

First, for an observed node V_j in anc_i, the Wright’s paths between V_i and V_j are just the directed paths from V_j to V_i, and the corresponding identifiability equation is $\text{IE}(V_i, V_j): \text{Cov}(V_i, V_j) = S_{WP_{pq}}$ if V_i becomes observed. If $\text{IE}(V_i, V_j)$ is redundant in the case that none of the Wright’s paths between V_i and V_j contains detour-paths, each path P_i from V_j to V_i will pass at least one observed node $V_k (k \neq i, j)$ according to Lemma 4. After removing all the incoming edges to the observed nodes that are not collider nodes of the detour-paths in S_{AV_i}, the intermediate observed node V_k on path P_i loses its incoming edges such that V_i will be disconnected with V_j. If $\text{IE}(V_i, V_j)$ is non-redundant in the case that none of the Wright’s paths between V_i and V_j contains detour-paths, then there exists at least
one path from V_j to V_i that does not pass any observed node that is not a collider of the detour-paths or has a length of 1. Such paths will not be affected by removing the incoming edges to the observed nodes. Thus, in graph G', node V_i is connected with V_j in S_{-AV_i} if $IE(V_i, V_j)$ is not redundant in the case that none of the Wright’s paths between V_i and V_j contains detour-paths, but disconnected with V_j in S_{-AV_i} if $IE(V_i, V_j)$ is redundant when none of the Wright’s paths between V_i and V_j contains detour-paths.

Second, for an observed node V_j in des_i, the Wright’s paths between V_i and V_j are just the paths from V_i to V_j. The identifiability equation $IE(V_i, V_j)$ is not redundant in the following three cases: 1) at least one Wright’s path has a length of 1; 2) at least one Wright’s path does not pass any observed nodes; 3) at least one Wright’s path contains one detour-path with its Wright’s coefficient being unidentifiable. Similar to the previous case, after removing all the outgoing edges from the observed nodes that are not the colliders of the detour-paths with unidentifiable Wright’s coefficients in des_i, in graph G', node V_i is still connected with V_j in des_i if $IE(V_i, V_j)$ is not redundant and disconnected with V_j in des_i if $IE(V_i, V_j)$ is redundant.

Finally, for an observed node V_j in rel_i, the identifiability equation is $IE(V_i, V_j): Cov(V_i, V_j) = \sum_{V_k \in S_{-AV_i}} WP_{ik} \cdot WP_{kj}$. In other words, each Wright’s path P_i between V_i and V_j consists of two segments: one from V_k to V_i and the other from V_k to V_j. If $IE(V_i, V_j)$ is redundant, then each Wright’s path contains at least one observed node V_i according to Lemma 4. This observed node V_i may be in one of the three sets: 1) $anc_i - bound_i$; 2) $bound_i$; 3) rel_i. When $V_i \in \{anc_i - bound_i\}$,
after removing all the incoming edges to the observed nodes that are not the colliders of detour-paths in anc_i, the path from V_k to V_i is broken, and correspondingly the original Wright’s path P_i does not exist in graph G'. This is, nodes V_i and V_j are disconnected in G' if $IE(V_i, V_j)$ is redundant in the case that none of the Wright’s paths between V_i and V_j contains detour-paths and $V_i \in \{\text{anc}_i - \text{bound}_i\}$. When $V_i \in \text{bound}_i$, after removing all the outgoing edges from the observed nodes in bound_i to nodes in rel_i, the path from V_k to V_j is broken, and correspondingly the original Wright’s path P_i does not exist in graph G'. This is, nodes V_i and V_j are disconnected in graph G' if $IE(V_i, V_j)$ is redundant and $V_j \in \text{bound}_i$. When $V_i \in \text{rel}_i$, after removing all the outgoing edges from the observed nodes that are not the colliders of the detour-paths with unidentifiable Wright’s coefficients in rel_i, the path from V_k to V_j is broken, and correspondingly the original Wright’s path P_i does not exist in graph G'. One can tell that nodes V_i and V_j are disconnected in graph G' if $IE(V_i, V_j)$ is redundant and $V_i \in \text{rel}_i$, and connected in graph G' if $IE(V_i, V_j)$ is not redundant.

In summary, after the edge-removal operation, for each observed node in G' that connects with V_i, and one identifiability equation can be generated. Among these equations, there still exist some redundant identifiability equations, because there are two cases that are not dealt with by the edge-removal operation: 1) One edge-removal operation is to remove all the incoming edges to the observed nodes that are not the colliders of detour-paths in anc_i, and this edge-removal process ignores the case that the intermediate observed nodes are the colliders of detour-paths in anc_i; 2) all the
edge-removal operations do not consider the case that \(V_i \) is a collider of detour-paths. These two cases still exist in the sub-graph \(G' \). Let \(N_w \) denote the total number of the observed nodes that are connected with \(V_i \) via any Wright’s path in graph \(G' \), and let \(N_r \) denote the number of redundant identifiability equations in graph \(G' \). Therefore, by definition, the identifiability gain is \(g(V_i, O) = N_w - N_r \). The theorem holds. ■

Lemma 6. For a given DAG \(G = (V, E) \), the following nodes must be observed to assure that all the parameters of the corresponding SEM are at least locally identifiable

1) The nodes with an out-degree 0;
2) The nodes with an out-degree 1;
3) The nodes with an in-degree 0 and an out-degree less than 3.

Proof. 1) Consider an unobserved node \(V_i \) with an out-degree 0 in \(G \), as shown in Fig. S-2(a). According to the Wright’s path coefficient method [1, 2], the parameters associated with all the incoming edges to \(V_i \) are not contained in any identifiability equation since \(V_i \) is a collider; thus, all the incoming edge parameters of \(V_i \) are unidentifiable. That is, the nodes with an out-degree 0 must be observed.
2) Consider an unobserved node V_i with an out-degree 1 in G and an in-degree n ($n = 0, 1, 2, ...$). When $n = 0$, the parameter c_i associated with the outgoing edge from V_i is not contained in any identifiability equations. Then c_i is unidentifiable, and V_i must be observed when V_i has an out-degree 1 and an in-degree 0. When $n > 0$, we first consider the case in Fig. S-2(b), where there exist no edges between the in-neighbor nodes of V_i. When all the neighbors of V_i are observed, we can get one identifiability equation $IE(V_p, V_q)$ for each in-neighbor node V_p and the out-neighbor node V_q. Because there are n in-neighbor nodes, we can get n identifiability equations. However, there are $n + 1$ unknown parameters in these identifiability equations (i.e., n incoming edge parameters and one outgoing edge parameter). Thus, the $n + 1$ unknown parameters are unidentifiable.

Figure S-2. Illustration of the must-be-observed nodes.
Even if there exist some edges between the in-neighbor nodes of V_i, the newly generated identifiability equations among the in-neighbor nodes will not contain any of the unknown parameters associated with the incoming or outgoing edges of V_i because V_i is a collider with respect to the in-neighbor nodes. Therefore, the nodes with an out-degree 1 must be observed.

3) There are two cases to consider here: the nodes with an in-degree 0 and an out-degree 1, and the nodes with an in-degree 0 and an out-degree 2. The first case has been discussed in Fig. S-2(b), so we focus on the second case. As shown in Fig. S-2(c), where there are no edges connecting the two out-neighbor nodes V_p and V_q. When the two out-neighbor nodes are observed, we can get only one identifiability equation $IE(V_p, V_q)$, but this identifiability equation contains two unknown parameters (i.e., the parameters associated with the two outgoing edges of V_i). Therefore, the two outgoing edge parameters are unidentifiable. Second, when there is one edge between two out-neighbor nodes V_p and V_q, still only one identifiability equation $IE(V_p, V_q)$ can be generated, but now it contains three unknown parameters (i.e., two outgoing edge parameters and one edge parameter between V_p and V_q). So the two outgoing edge parameters are still unidentifiable.

When there are more descendent nodes of V_i and more edges among the nodes, more identifiability equations will be obtained. However, these identifiability equations cannot help to verify the identifiability of the outgoing edge parameters of V_i because the two outgoing edge parameters always appear together in forms of a product in any identifiability equation. Therefore, the nodes with an in-degree 0 and an out-degree 1
or 2 must be observed.

Finally, consider an unobserved node with an in-degree 0 and an out-degree 3. We start with the case shown in Fig. S-2(d), where there are no edges between the three out-neighbor nodes \(V_p \), \(V_q \) and \(V_r \). When all the out-neighbor nodes are observed, we can get three identifiability equations: \(IE(V_p, V_q) \), \(IE(V_p, V_r) \) and \(IE(V_q, V_r) \). These three identifiability equations contains three unknown parameters (i.e., the three outgoing edge parameters of \(V_i \)), and these equations are non-redundant. Therefore, the three outgoing-edge parameters are at least locally identifiable when all the out-neighbor nodes are observed. For an unobserved node with an in-degree 0 and an out-degree greater than 3, we can reach the same conclusion. Therefore, an unobserved node with an in-degree 0 and an out-degree equal to or greater than 3 is not required to be observed.

In summary, the lemma holds. ■

References