Additional File 5: List of parameters of the mathematical models A and B, respectively.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>Differentiation rate from C_- to C_+</td>
<td>[1/h]</td>
<td>estimated</td>
</tr>
<tr>
<td>r_1</td>
<td>Maximum shedding rate for non-infected CD163 positive cells, i.e. transition rate from C_- to C_+.</td>
<td>[1/h]</td>
<td>estimated</td>
</tr>
<tr>
<td>f_r</td>
<td>Half saturation concentration of compound P for receptor shedding</td>
<td>[1]</td>
<td>estimated</td>
</tr>
<tr>
<td>m_-, m_+, m_--</td>
<td>Mortality rates for non-infected $C_-, C_+ and C_-$. cells, respectively</td>
<td>[1/h]</td>
<td>estimated</td>
</tr>
<tr>
<td>c_1, c_2</td>
<td>Proportion of C_- and C_+ cells, respectively, at start of incubation (time = 0)</td>
<td>[1]</td>
<td>estimated</td>
</tr>
<tr>
<td>b_{max}</td>
<td>Maximum infection rate</td>
<td>[1/h]</td>
<td>estimated</td>
</tr>
<tr>
<td>f_b</td>
<td>Half saturation concentration of compound Q for infection</td>
<td>[1]</td>
<td>estimated</td>
</tr>
<tr>
<td>p_P, p_Q</td>
<td>Production rate of compounds P and Q, respectively</td>
<td>[1/h]</td>
<td>0.5*</td>
</tr>
<tr>
<td>s_P, s_Q</td>
<td>Decay rates of compounds P and Q, respectively</td>
<td>[1/h]</td>
<td>0.5*</td>
</tr>
<tr>
<td>r_2</td>
<td>Maximum shedding rate for infected CD163 positive cells, i.e. transition rate from $C^-* to C^+*$.</td>
<td>[1/h]</td>
<td>estimated</td>
</tr>
<tr>
<td>a_+, a_-</td>
<td>Mortality rates for infected C^-* and C^+* cells, respectively</td>
<td>[1/h]</td>
<td>estimated</td>
</tr>
</tbody>
</table>

MODEL B

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ_1</td>
<td>Differentiation rate from C.M. to C.^+_M.</td>
<td>[1/h]</td>
<td>estimated</td>
</tr>
<tr>
<td>δ_2</td>
<td>Differentiation rate from C.^-_M to C.^-_M.</td>
<td>[1/h]</td>
<td>estimated</td>
</tr>
<tr>
<td>$\sigma_{1,\text{max}}$</td>
<td>Max. (de) activation rate between C.M. and C.^-_M.</td>
<td>[1/h]</td>
<td>estimated</td>
</tr>
<tr>
<td>$\sigma_{2,\text{max}}$</td>
<td>Max. (de) activation rate between C.$+_M$. and C.$+_M$.</td>
<td>[1/h]</td>
<td>estimated</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Symbol</td>
<td>Unit</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>ε</td>
<td>Constant determining how gradual the susceptibility state switches as F approaches F_T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_T</td>
<td>Threshold value for compound F</td>
<td></td>
<td>[1]</td>
</tr>
<tr>
<td>γ</td>
<td>Production rate for compound F</td>
<td></td>
<td>[1/h]</td>
</tr>
<tr>
<td>ω</td>
<td>Decay rate for compound F</td>
<td></td>
<td>[1/h]</td>
</tr>
<tr>
<td>$\mu_1, \mu_2, \mu_3, \mu_4$</td>
<td>Mortality rates for non-infected C.M., C+M. and C+M+ cells, respectively</td>
<td></td>
<td>[1/h]</td>
</tr>
<tr>
<td>$\lambda_1, \lambda_2, \lambda_3$</td>
<td>Proportion of C.M., C+M. and C+M+ cells, respectively, at start of incubation ($t=0$)</td>
<td></td>
<td>[1]</td>
</tr>
<tr>
<td>β_1</td>
<td>Infection rate for C.M. cells, i.e. transition rate from C.M. to C.$^M_+^$</td>
<td></td>
<td>[1/h]</td>
</tr>
<tr>
<td>β_2</td>
<td>Infection rate for C.M. cells, i.e. transition rate from C+M. to C.$^M_+^$</td>
<td></td>
<td>[1/h]</td>
</tr>
<tr>
<td>α_3, α_4</td>
<td>Mortality rates for infected C.$^M_+^$ and C.$^M_+^$ cells, respectively</td>
<td></td>
<td>[1/h]</td>
</tr>
</tbody>
</table>

Identifiability analysis revealed poor identifiability of model parameters controlling the density dependent effects of autocrine substances (i.e. quantities P, Q in model A and F in model B) and confounding between the shedding and infection rates (f, Q_b in model A) and switching rates (F_T in model B) with the respective production rates (parameters p_P, p_Q in model A, and γ in model B) and decay rates (parameters s_P, s_Q in model A and ω in model B) of these compounds. To remedy this issue, we fixed all production and decay rates of these compounds to the arbitrary constant value of 0.5 and estimated the remaining parameters through model fitting. For similar reasons, the constant ε in model B was set to the arbitrary value of 0.1.