Supplemental Material

Model Specification and full posterior distribution

\[M_{ijk} \sim \text{Bernoulli}(p_{ijk}) \]
\[g(p_{ijk}) = \alpha_{jk} + \beta_{0,k} + \beta_{1,k} \cdot \text{Age}_{ijk} + \beta_{2,k} \cdot \text{Urban}_{jk} + \beta_{3} \cdot \text{Age}_{ijk} + \beta_{4} \cdot \text{Urban}_{jk} \]
\[p(\beta_{l,k}) \sim 1, \text{for}(l = 0, 1, 2) \]
\[p(\beta_{l}) \sim 1, \text{for}(l = 3, 4) \]
\[\alpha_{jk} \sim N(0, \sigma^{2}_{\alpha_k}) \]
\[\sigma_{\alpha_k} \sim \text{half-t}(3, 0, 10) \]

Here we present the full model specification and complete posterior distribution. The malaria status \(M_{ijt} \) (1 if infected, 0 if not) of individual \(i \) from cluster \(j \) in region \(k \) follows a Bernoulli distribution. Applying a logit link function \(g(p_{ijk}) = \log(p/1-p) \), we estimate \(p_{ijk} \) using a mixed-effect model where \(\alpha_{jk} \) are intercepts for each cluster \(j \) in region \(k \), \(\beta \) are the is the population-level effects (sometimes referred to as “fixed” effects) and \(\beta_{k} \) are group-level effects (sometimes called “random effects”). Note that the model contains random intercepts and random slopes at the region \(k \) level. The priors were selected to be non-informative (Gelman and others 2006), and are the default prior choices in the \texttt{brms} package (Bürkner and others 2017).

Based on these parameters, the full posterior distribution of our model is:

\[P(\sigma, \alpha, \beta, |...) \propto (\prod_{i,j,k} \text{Bernoulli}(M_{ijk}|p_{ijk}))(\prod_{j,k} N(\alpha_{jk}|0, \sigma^{2}_{\alpha_k}))(\prod_{k} \text{half-t}(\sigma_{\alpha_k}|3, 0, 10)) \]

Model outputs from Burkina Faso.

Here we provide some diagnostic information on for our prevalence, sensitivity, and specificity models, for the Burkina Faso data. As we explicitly discuss in the main article, one of the primary goals of this work is to demonstrate the usefulness of extending a relatively standard statistical model into an interactive tool for decision support. As such, our models rely on widely used open source data, and both tools and models are intentionally designed to be relatively simple.

Prevalence Model

Gelman-Rubin convergence values (\(\hat{R} \)) range from 0.999 to 1.003.
Trace plots

Population effects

Intercept

Urbanicity

Age

Chain

1

2

3

4
Urban/Rural Regional Effects

Chain 1 2 3 4
Age Regional Effects

Sensitivity Model

Gelman-Rubin convergence values (\hat{R}) range from 0.999 to 1.005.
Trace plots

Population effects

Intercept

Urbanicity

Age

Chain 1 2 3 4
Urban/Rural Regional Effects

Chain 1 2 3 4
Age Regional Effects

Specificity Model

Gelman-Rubin convergence values (\hat{R}) range from 0.999 to 1.005.
Trace plots

Population effects

Intercept

Urbanicity

Age

Chain 1 2 3 4

0 200 400 600 800 1000
0.0
0.1
0.2
0.3
0.4
0.5
1.0
1.5
−2.0
−1.5
−1.0
−0.5
0.0
0
200
400
600
800
1000
0
200
400
600
800
1000
0
200
400
600
800
1000
Urban/Rural Regional Effects

Chain 1 2 3 4
Age Regional Effects

References
