We categorised hospitals into three levels, low, medium and high, according to a weighted calculation[1] of “perinatal intensity” based on admissions at 24 to 25 weeks’ gestation.

First, each individual hospital was assigned an activity ratio according to the number of babies admitted into a neonatal intensive care unit at 24 to 25 weeks’ gestation divided by the number of fetuses alive at maternal admission to hospital at the same gestations (equation 1).

\[
\text{Activity ratio } (p_i) = \frac{\text{Number of babies admitted into NICU}}{\text{Number of foetuses alive at maternal admission to hospital}}
\]

(1)

Using these ratios, the mean activity level across all included hospitals was obtained using formula shown in equation 2, where \(P_w \) is the overall weighted mean, \(p_i \) is the activity ratio in hospital \(i \), and \(w_i \) is the weighting factor for hospital \(i \):

\[
P_w = \frac{\sum p_i w_i}{\sum w_i}
\]

(2)

The weighting factors for individual hospitals were obtained using the formula shown in equation 3.

\[
w_i = \frac{1}{\hat{\sigma}_p^2 + \frac{(\bar{p}(1-p) - \hat{\sigma}_p^2)}{n_i}}
\]

(3)

In this equation, \(\bar{p} \) represents the unweighted mean activity ratio of all hospitals (obtained simply by summation of all the ratios and dividing by the total number of hospitals), and \(\hat{\sigma}_p^2 \) is the estimated standard deviation, which is obtained from the following equation:

\[
\hat{\sigma}_p^2 = \frac{\sum (p_i - \bar{p})^2}{k-1} - \frac{\sum p_i (1-p_i)}{n_i} \frac{n_i}{k}
\]

(4)
Here, again, \bar{p} is the unweighted mean activity ratio, p_i is the activity ratio for hospital i, n_i is the number of fetuses alive at maternal admission to hospital in hospital i, and k is the total number of hospitals.

Having calculated the mean activity level, 25th and 75th percentiles were obtained for different numbers of fetuses alive at maternal admission to hospital using equation 5:

$$
\text{25th/75th percentiles} = P_w \pm 0.675\left(\sqrt{\frac{\hat{\sigma}_p^2}{n}}\right) \quad (5)
$$

where n is the number of foetuses admitted into hospital and $\hat{\sigma}_p^2$ is defined by equation 4. This enabled individual hospitals to be compared to the percentiles, and consequently permitting allocation to one of the three potential groups created (see figure 1 in the main article).

Author details
1 INSERM UMR 1153, Obstetrical, Perinatal and Pediatric Epidemiology Research Team (EPOPé), Centre for Epidemiology and Statistics Sorbonne Paris Cité, DHU Risks in Pregnancy, Paris Descartes University, Hôpital Tenon, Rue de la Chine, 75020 Paris, France. 2 Institute for Womens’ Health, UCL, 74 Huntley Street, WC1E 6AU, London, UK. 3 SAMU 93 - SMUR Pédiatrique, CHU André Gregoire, Groupe Hospitalier Universitaire Paris Seine-Saint-Denis, Assistance Publique des Hôpitaux de Paris, Montreuil, France. 4 UPMC Université Paris 6, Sorbonne Universités, Paris, France. 5 Service de Néonatologie, Hôpital Armand Trousseau, Assistance Publique des Hôpitaux de Paris, Paris, France. 6 Service de Néonatologie, Hôpital Armand Trousseau, Assistance Publique des Hôpitaux de Paris, Paris, France. 7 Service de Néonatologie, Centre Hospitalier Regional Universitaires Tours, Tours, France. 8 Service de Néonatologie, Centre Hospitalier Regional Universitaires Tours, Tours, France. 9 Service de Néonatologie, Centre Hospitalier Regional Universitaires Tours, Tours, France. 10 Service de Néonatologie, Centre Hospitalier Regional Universitaires Tours, Tours, France.

References