Additional file 10: Analysis of mathematical models

Based on the expressions of mathematical modeling in the Methods section, here we provide the corresponding theoretical analysis as follows for Fig. 6.

Scenario 1: cooperators cannot exclude defectors. In this case, we have

\[\pi_D = \frac{rcN_c}{N}, \]

\[\pi_{CD} = (1 - q) \frac{rcN_c}{N} + q \left[\frac{rc(N_c + 1)}{N} - c \right] - \Delta \]

\[= \frac{rcN_c}{N} + q \frac{rc}{N} - qc - \Delta, \]

and

\[\pi_C = \frac{rc(N_c + 1)}{N} - c. \]

Accordingly, the average payoffs for cooperator (C), conditional defector (CD), and defector (D) are respectively given by

\[P_C = \frac{rc(N - 1) + rc}{N} - c, \]

\[P_D = \frac{rc(N - 1)}{N}, \]

and

\[P_{CD} = \frac{rc(N - 1)}{N} + q \frac{rc}{N} - qc - \Delta. \]

Then we discuss the equilibrium points of the system. By substituting \(x = 1 - y - z \), we can get

\[\dot{y} = y[(1 - y)(P_D - P_C) - z(P_{CD} - P_C)], \]

\[\dot{z} = z[(1 - z)(P_{CD} - P_C) - y(P_D - P_C)]. \]

where \(P_D - P_C = c - \frac{rc}{N} \) and \(P_B - P_{CD} = qc \left(1 - \frac{1}{N} \right) + \Delta. \) For \(r < N \), we have \(P_B > P_C \) and \(P_D > P_{CD} \). Therefore there is no interior fixed point and the system only has three corner fixed points, namely, \((x, y, z) = (1, 0, 0), (0, 1, 0), \) and \((0, 0, 1)\), respectively in the C-D-CD simplex. Furthermore, D has an evolutionary advantage over C and CD. Accordingly, the system will ultimately end up in the full D state, which is consistent with numerical calculations in Fig. 6c, d.

Scenario 2: cooperators are able to exclude defectors. As shown in Fig. 6a, b, we have the exclusion probability \(p = 1 \). We then have that the probability of finding, among the \(N - 1 \) other players in the sample, \(S - 1 \) co-players sharing the public goods is

\[\binom{N-1}{S-1}(1 - y)^{S-1}y^{N-S}. \]

Furthermore, the probability that there are \(k \) cooperators and \(S - k - 1 \) conditional defectors is

\[\binom{S-1}{k}\left(\frac{x}{x+z}\right)^k\left(\frac{z}{x+z}\right)^{S-1-k}. \]

Hence the expected payoff of a CD in a group of \(S \) players is
\[
\sum_{k=0}^{s-1} \binom{s-1}{k} \left(\frac{r}{x+z} \right)^k \left(\frac{z}{x+z} \right)^{s-1-k} \left(\frac{r e^{k-1}}{s} - \Delta \right) = \frac{r e}{s (s-1)} \frac{x}{x+z} - \Delta.
\]

Thus,
\[
P_{CD} = \frac{r e x}{x+z} \sum_{s=1}^{N} \binom{N-1}{s-1} (1-y)^{s-1} y^{N-s} \left(\frac{s-1}{s} - \Delta \right) = \frac{r e x}{1-y} \left[1 - \frac{1-y^N}{N(1-y)} \right] - \Delta.
\]

And the expected payoff of a C in a group of S players is
\[
\sum_{k=0}^{s-1} \binom{s-1}{k} \left(\frac{r e x + z}{x+z} \right)^k \left(\frac{x}{x+z} \right)^{s-1-k} \left(\frac{r e^{k+1}}{s} - c - \delta \right) = \frac{r e}{s} (s-1) \frac{x}{x+z} + \frac{r e}{s} - c - \delta.
\]

As a result, we have
\[
P_{C} = \sum_{s=1}^{N} \binom{N-1}{s-1} (1-y)^{s-1} y^{N-s} \left[\frac{r e}{s} (s-1) \frac{x}{x+z} + \frac{r e}{s} - c - \delta \right] = \frac{r e}{1-y} \left[1 - \frac{1-y^{N}}{N(1-y)} \right] - c - \delta,
\]

and
\[
P_{CD} - P_{C} = (c + \delta - \Delta) - \frac{r e}{1-y} \frac{(1-y^{N})}{N}.
\]

We emphasize that the following inequalities \(0 < r e - c - \delta\) and \(c + \delta - \Delta - \frac{r e}{N} > 0\) hold, such that the members in a group where all C who exclude D are better off than D, but CD are better off than members in a group of C since the latter does not exclude the former. Furthermore, we define the function \(F(y) = P_{CD} - P_{C} = (c + \delta - \Delta) - \frac{r e}{1-y} \frac{(1-y^{N})}{N}\), and thus \(F(y) = 0\) being the equilibrium condition. We consider the function \(G(y) = (1-y)F(y)\) which has the same roots as \(F(y)\) in \((0,1)\).

We can get that \(G(0) = (c + \delta - \Delta) - \frac{r e}{N}\) and \(G(1) = 0\). And \(G'(y) = (1-y)F'(y) - F(y)\) and \(G''(1) = r e - c - \delta + \Delta\). Furthermore, \(G''(y) = r e (N-1) y^{N-2} > 0\) for \(N \geq 2\). Therefore, when \(\frac{r e}{N} < c + \delta - \Delta < r e\), there might exist an interior fixed point. In addition, there are three corner fixed points, namely, \((x, y, z) = (1, 0, 0), (0, 1, 0)\), and \((0, 0, 1)\), respectively.

We first study the stability of the three corner fixed points. We respectively define
\[
h(y, z) = y[(1-y)(P_{D} - P_{C}) - z(P_{CD} - P_{C})],
\]
and
\[
g(y, z) = z[(1-z)(P_{CD} - P_{C}) - y(P_{D} - P_{C})].
\]

Accordingly, the Jacobian matrix can be given as
\[
J = \begin{bmatrix}
\frac{\partial h(y, z)}{\partial y} & \frac{\partial h(y, z)}{\partial z} \\
\frac{\partial g(y, z)}{\partial y} & \frac{\partial g(y, z)}{\partial z}
\end{bmatrix},
\]

where
\[
\frac{\partial h}{\partial y}(y, z) = [(1-y)(P_{D} - P_{C}) - z(P_{CD} - P_{C})] + y[-(P_{D} - P_{C}) + (1-y)] \frac{\partial}{\partial y} (P_{D} - P_{C}) - z \frac{\partial}{\partial y} (P_{CD} - P_{C})
\]
\[
\frac{\partial h}{\partial z}(y, z) = y \left[(1-y) \frac{\partial}{\partial z} (P_{D} - P_{C}) - (P_{CD} - P_{C}) - z \frac{\partial}{\partial z} (P_{CD} - P_{C})\right].
\]
\[
\frac{\partial g}{\partial y}(y, z) = z \left[(1 - z) \frac{\partial}{\partial y} (P_{CD} - P_C) - (P_D - P_C) - y \frac{\partial}{\partial y} (P_D - P_C) \right],
\]
and
\[
\frac{\partial g}{\partial z}(y, z) = [(1 - z)(P_{CD} - P_C) - y(P_D - P_C)] + z[-(P_{CD} - P_C) + (1 - z) \frac{\partial}{\partial z} (P_{CD} - P_C) - \]
\[
y \frac{\partial}{\partial z} (P_D - P_C)].
\]

(1) For the corner fixed point \((1, 0, 0)\), we have
\[
\frac{\partial h}{\partial y}(0, 0) = P_D - P_C = -(rc - c - \delta) < 0,
\]
\[
\frac{\partial h}{\partial z}(0, 0) = 0,
\]
\[
\frac{\partial g}{\partial y}(0, 0) = 0,
\]
and
\[
\frac{\partial g}{\partial z}(0, 0) = P_{CD} - P_D = c + \delta - \Delta - \frac{rc}{N}.
\]
As a result, the Jacobian is
\[
J = \begin{bmatrix}
-(rc - c - \delta) & 0 \\
0 & c + \delta - \Delta - \frac{rc}{N}
\end{bmatrix}
\]
Therefore, the fixed point is unstable since \(c + \delta - \Delta - \frac{rc}{N} > 0 \).

(2) For the corner fixed point \((0, 1, 0)\), we have
\[
\frac{\partial h}{\partial y}(1, 0) = -(P_D - P_C) = rc - c - \delta > 0,
\]
\[
\frac{\partial h}{\partial z}(1, 0) = -(P_{CD} - P_C) = -(c + \delta - \Delta - rc),
\]
\[
\frac{\partial g}{\partial y}(1, 0) = 0,
\]
and
\[
\frac{\partial g}{\partial z}(1, 0) = P_{CD} - P_D = -\Delta < 0.
\]
As a result, the Jacobian is
\[
J = \begin{bmatrix}
rc - c - \delta & -(c + \delta - \Delta - rc) \\
0 & -\Delta
\end{bmatrix}
\]
thus the fixed point is a saddle node and unstable.

(3) For the corner fixed \((0, 0, 1)\), we have
\[
\frac{\partial h}{\partial y}(0, 1) = (P_D - P_{CD}) = \Delta > 0,
\]
\[
\frac{\partial h}{\partial z}(0, 1) = 0,
\]
\[
\frac{\partial g}{\partial y}(0, 1) = -(P_D - P_C) = \frac{rc}{N} - c - \delta,
\]
\[
\frac{\partial g}{\partial z}(0,1) = -(P_{CD} - P_C) = \Delta + \frac{rc}{N} - c - \delta.
\]

As a result, the Jacobian is
\[
J = \begin{bmatrix}
\frac{\Delta}{N} - c - \delta & \Delta + \frac{rc}{N} - c - \delta
\end{bmatrix}.
\]

Thus, the fixed point is unstable since \(\Delta > 0\).

We further study the dynamics at the interior fixed point if it is present in the simplex. To do that, we introduce a new variable \(f = \frac{x}{y+z}\), representing the fraction of C among individuals actually sharing the public goods. Thus we have
\[
f = \frac{x(z+x)-x(z+x)}{(z+x)^2} = -f(1-f)(P_{CD} - P_C).
\]

On the other hand, \(\dot{y} = y(P_D - \bar{P})\), where \(\bar{P} = yP_D + zP_C + xP_C = -x(P_{CD} - P_C) + (1-y)(P_{CD} - P_D) + P_D\), resulting in that
\[
\dot{y} = y[x(P_{CD} - P_C) - (1-y)(P_{CD} - P_D)] = y(1-y)[f(c + \delta - \Delta - rc) + \Delta].
\]

Thus we have
\[
\begin{cases}
\dot{f} = -f(1-f)[(c + \delta - \Delta) - \frac{rc}{1-y}(1 - y^N)] \\
\dot{y} = y(1-y)[f(c + \delta - \Delta - rc) + \Delta].
\end{cases}
\]

The separability of the factors allows us to write
\[
\frac{dy}{df} = \frac{y(1-y)}{(c+\delta-\Delta) - \frac{rc}{1-y}(1 - y^N)} = \frac{1}{f(1-f)}
\]

such that
\[
\int \frac{(c + \delta - \Delta) - \frac{rc}{1-y}(1 - y^N)}{y(1-y)} dy = \int \frac{1}{f(1-f)} df.
\]

The integral of the right-hand side is
\[
(c + \delta - \Delta - rc) \log(1-f) - \Delta[\log(f) - \log(1-f)].
\]

The integral of the left-hand side is
\[
(c + \delta - \Delta)[\log(y) - \log(1-y)] - \frac{rc}{N} \int \frac{1 - y^N}{y(1-y)^2} dy,
\]

where
\[
\frac{rc}{N} \int \frac{1 - y^N}{y(1-y)^2} dy
\]

\[
= \frac{rc}{N} \left[\log(y) - \log(y-1) - \frac{1}{y-1} \right] - \frac{rc}{N} \int \frac{1}{y-1} \log(1-y) + \sum_{t=2}^{N-1} \left(\frac{N-1}{t} \right) (-1)^t \frac{(1-y)^{t-1}}{t-1}
\]

\[
+ \text{Const.}
\]

In this way, we identify the constant of motion
\[
H(f,y) = (c + \delta - \Delta - rc) \log(1-f) - \Delta[\log(f) - \log(1-f)] + (c + \delta - \Delta)[\log(y) - \\
\log(1-y)] - \frac{rc}{N} \left[\log(y) - \log(y-1) - \frac{1}{y-1} \right] + \frac{rc}{N} \int \frac{1}{y-1} \log(1-y) + \sum_{t=2}^{N-1} \left(\frac{N-1}{t} \right) (-1)^t \frac{(1-y)^{t-1}}{t-1}.
\]

Therefore, we have
\[\dot{H} = \frac{\partial H}{\partial f} \dot{f} + \frac{\partial H}{\partial y} \dot{y} = 0. \]

Thus the fixed point in the simplex is a center surrounded by closed and periodic orbits, as confirmed by numerical calculations in Fig. 6b.

Finally, we show the evolutionary dynamics of the three strategists for different \(p \) values by numerical calculations, as plotted in Additional file 9: Figure S7. We find that for a small exclusion probability, full D is the only stable state in the system (Additional file 9: Figure S7A, B). It suggests that when the punishment mechanism does not work effectively, D can still dominate the whole population no matter whether the CD is present or not. While for a high exclusion probability, we find that periodic oscillations happen among the three strategies, indicating that C, CD and D coexist when an effective social punishment is available (Additional file 9: Figure S7C, D, E, and F).