Additional file 1: JAGS models

A meta-regression analysis of 41 Australian problem gambling prevalence estimates and their relationship to total spending on electronic gaming machines

Authors: Francis Markham *, Martin Young, Bruce Doran and Mark Sugden

Listing 1: Random effects meta-analysis of the prevalence of problem gambling, without moderators

```r
model {
  for (i in 1:N) {
    y[i] ~ dbin(p[i], s_size[i])
    logit(p[i]) <- intercept + theta[i]

    # Calculate the weights to help with estimating Q
    w[i] <- 1 / (1/y[i] + 1/(s_size[i] - y[i]))

    theta[i] ~ dnorm(0, prec)
    resid[i] <- y[i] - fitted_est[i]
    fitted_est[i] <- p[i] * s_size[i]
  }

  # Calculate Q from Borenstein et al, p. 114, eq. 16.5
  N_params <- 1

  # Calculate Q from eq 16.1 on p. 109, Borenstein et al.
  Q <- sum(w * ((logit(p) - intercept)^2))

  # Calculate I2
  # As defined on p. 1546, eq. 10 in http://doi.org/10.1002/sim.1186
  H.sq <- Q / (N - N_params)

  # As defined on Borenstein et al., p. 117, eq. 16.9
}
```
I.sq <- \frac{\min(Q - (N - N_params))}{\max(Q, 10^{-12}), 1.0} \times 100.0

\text{intercept} \sim \text{dnorm}(0, 10^{-6})
\text{tau} \sim \text{dunif}(0, 10) \quad \# \text{Suggested by http://dx.doi.org/10.1002/sim.2112}
\tau.sq \sim \text{dunif}(0, 10)
\text{prec} \leftarrow \frac{1}{\tau.sq}

\text{# Convenience settings for runjags in R:}
\text{monitor}\# \text{intercept, tau, tau.sq, Q, I.sq, H.sq}
\text{modules}\# \text{glm on}
\text{response}\# y
\text{residual}\# \text{resid}
\text{fitted}\# \text{fitted_est}

\begin{verbatim}
Initial values

inits{
 "intercept" <- -1.5
}

inits{
 "intercept" <- -0.5
}

inits{
 "intercept" <- 0.5
}

inits{
 "intercept" <- 1.5
}
\end{verbatim}
Listing 2: Random effects meta-analysis of the prevalence of problem gambling, with moderators and informative priors

```r
model {
  for (i in 1:N) {
    y[i] ~ dbin(p[i], s_size[i])
    logit(p[i]) <- intercept + 
      B_doorknock * doorknock[i] + 
      B_SOGS * SOGS[i] + 
      B_freq_thresh_m * freq_thresh_m[i] + 
      B_freq_thresh_f * freq_thresh_f[i] + 
      B_freq_thresh_w * freq_thresh_w[i] + 
      B_Years * Years_before_2016[i] + 
      B_Exp_EGM_pc_hdi * Exp_TG_EGM_pc_hdi[i] + 
      theta[i]
    theta[i] ~ dnorm(0, prec)

    # Inverse variance weights for I2
    w[i] <- 1 / (1/y[i] + 1/(s_size[i] - y[i]))

    # Repeat with no covariates for R2 calc
    y_full[i] ~ dbin(p_full[i], s_size[i])
    logit(p_full[i]) <- intercept_full + theta_full[i]
    theta_full[i] ~ dnorm(0, prec_full)

    # calculate residuals and fitted values to bring back into R
    resid[i] <- y[i] - fitted_est[i]
    fitted_est[i] <- p[i] * s_size[i]
  }
}

# Priors
FLATTEN_FACTOR <- 4

intercept ~ dnorm(0, 10^-6)
B_doorknock ~ dnorm(0.0761, (1/(0.3998*FLATTEN_FACTOR))^2)
B_SOGS ~ dnorm(0.4797, (1/(0.1000*FLATTEN_FACTOR))^2)
```

B_freq_thresh_m ~ dnorm(-0.0332, (1/(0.1150*FLATTEN_FACTOR))^2)
B_freq_thresh_f ~ dnorm(-0.0958, (1/(0.1002*FLATTEN_FACTOR))^2)
B_freq_thresh_w ~ dnorm(-0.3965, (1/(0.0915*FLATTEN_FACTOR))^2)
B_Years ~ dnorm(0, 10^-6)
B_Exp_EGM_pc_hdi ~ dnorm(0, 10^-6)

Heterogeneity statistics
N_params <- 8

Calculate tau and tau2
prec <- 1/(tau.sq)
tau.sq <- tau^2
tau ~ dunif(0,10) # Suggested by http://dx.doi.org/10.1002/sim.2112

Calculate I2
As defined on p. 1546, eq. 9 and 10 http://doi.org/10.1002/sim.1186
H.sq <- (tau.sq + sigma.sq) / sigma.sq
sigma.sq <- (sum(w) * (N - 1)) / (sum(w)^2 - sum(w^2))
I.sq <- tau.sq / (tau.sq + sigma.sq)

H.sq.v2 <= (((sum(w) - (sum(w^2) / sum(w)) * tau.sq) / (N - 1)) + 1 # eq. 11 and 10 are equivalent
I.sq.v2 <= (H.sq.v2 - 1) / H.sq.v2

R2 calc
intercept_full ~ dnorm(0, 10^-6)
tau_full ~ dunif(0,10)
tau.sq_full <- tau_full^2
prec_full <- 1/(tau.sq_full)
R.sq <- (1 - max(min(tau.sq / tau.sq_full, 1.0), 0.0)) * 100.0

Convenience settings for runjags in R:
#monitor# intercept, B_doorknock, B_SOGS, B_Years, B_Exp_EGM_pc_hdi, B_freq_thresh_m, B_freq_thresh_f, B_freq_thresh_w,tau, tau.sq, tau_full, tau.sq_full, I.sq, H.sq, R.sq
#modules# glm on
#response# y
#residual# resid
#fitted# fitted_est
Initial values

```r
inits{
  "intercept" <- -1.5
  "B_doorknock" <- -1.5
  "B_SOGS" <- 1.5
  "B_freq_thresh_m" <- 0
  "B_freq_thresh_f" <- 0.5
  "B_freq_thresh_w" <- 0
  "B_Years" <- -0.5
  "B_Exp_EGM_pc_hdi" <- -0.5
}

inits{
  "intercept" <- -0.5
  "B_doorknock" <- -0.5
  "B_SOGS" <- -1.5
  "B_freq_thresh_m" <- 0
  "B_freq_thresh_f" <- 0.5
  "B_freq_thresh_w" <- 0
  "B_Years" <- 1.5
  "B_Exp_EGM_pc_hdi" <- 1.5
}

inits{
  "intercept" <- 0.5
  "B_doorknock" <- -0.5
  "B_SOGS" <- 1.5
  "B_freq_thresh_m" <- 0
  "B_freq_thresh_f" <- 0.5
  "B_freq_thresh_w" <- 0
  "B_Years" <- 1.5
}
```
"B_Exp_EGM_pc_hdi" <- -1.5
}

inits{
"intercept" <- 1.5
"B_doorknock" <- -1.5
"B_SOGS" <- -0.5
"B_freq_thresh_m" <- 0
"B_freq_thresh_f" <- 1.5
"B_freq_thresh_w" <- 0
"B_Years" <- -0.5
"B_Exp_EGM_pc_hdi" <- 0.5
}
Listing 3: Random effects meta-analysis of the prevalence of problem gambling, with moderators and fixed priors

model
{
 for(i in 1:N) {
 y[i] ~ dbin(p[i], s_size[i])

 logit(p[i]) <- intercept +
 B_doorknock * doorknock[i] +
 B_SOGS * SOGS[i] +
 B_freq_thresh_m * freq_thresh_m[i] +
 B_freq_thresh_f * freq_thresh_f[i] +
 B_freq_thresh_w * freq_thresh_w[i] +
 B_Years * Years_before_2016[i] +
 B_Exp_EGM_pc_hdi * Exp_TG_EGM_pc_hdi[i] +
 theta[i]

 theta[i] ~ dnorm(0, prec)

 # Inverse variance weights for I2
 w[i] <- 1 / (1/y[i] + 1/(s_size[i] - y[i]))

 # Repeat with no covariates for R2 calc
 y_full[i] ~ dbin(p_full[i], s_size[i])
 logit(p_full[i]) <- intercept_full + theta_full[i]
 theta_full[i] ~ dnorm(0, prec_full)

 # calculate residuals and fitted values to bring back into R
 resid[i] <- y[i] - fitted_est[i]
 fitted_est[i] <- p[i] * s_size[i]
 }

 # Priors
 intercept ~ dnorm(0, 10^-6)
 B_doorknock ~ dnorm(0.0761, 10^24)
 B_SOGS ~ dnorm(0.4797, 10^24)
 B_freq_thresh_m ~ dnorm(-0.0332, 10^24)
 B_freq_thresh_f ~ dnorm(-0.0958, 10^24)
 B_freq_thresh_w ~ dnorm(-0.3965, 10^24)
}
B_Years ~ dnorm(0, 10^-6)
B_Exp_EGM_pc_hdi ~ dnorm(0, 10^-6)

Heterogeneity statistics
N_params <- 8

Calculate tau and tau2
prec <- 1/(tau_sq)
tau_sq <- tau^2
tau ~ dunif(0,10) # Suggested by http://dx.doi.org/10.1002/sim.2112

Calculate I2
As defined on p. 1546, eq. 9 and 10 http://doi.org/10.1002/sim.1186
H_sq <- (tau_sq + sigma_sq) / sigma_sq
sigma_sq <- (sum(w) * (N - 1)) / (sum(w)^2 - sum(w^2))
I_sq <- tau_sq / (tau_sq + sigma_sq)

R2 calc
intercept_full ~ dnorm(0, 10^-6)
tau_full ~ dunif(0,10)
tau_sq_full <- tau_full^2
prec_full <- 1/(tau_sq_full)
R_sq <- (1 - max(min(tau_sq / tau_sq_full, 1.0), 0.0)) * 100.0

Convenience settings for runjags in R:
#monitor# intercept, B_doorknock, B_SOGS, B_Years, B_Exp_EGM_pc_hdi, B_freq_thresh_m, B_freq_thresh_f, B_freq_thresh_w, tau, tau_sq, tau_full, tau_sq_full, I_sq, H_sq, R_sq
#modules# glm on
#response# y
#residual# resid
#fitted# fitted_est

#~~
Initial values
```r
inits{
  "intercept" <- -1.5
  "B_doorknock" <- -1.5
  "B_SOGS" <- 1.5
  "B_freq_thresh_m" <- 0
  "B_freq_thresh_f" <- 0.5
  "B_freq_thresh_w" <- 0
  "B_Years" <- -0.5
  "B_Exp_EGM_pc_hdi" <- -0.5
}

inits{
  "intercept" <- -0.5
  "B_doorknock" <- -0.5
  "B_SOGS" <- 1.5
  "B_freq_thresh_m" <- 0
  "B_freq_thresh_f" <- 0.5
  "B_freq_thresh_w" <- 0
  "B_Years" <- 1.5
  "B_Exp_EGM_pc_hdi" <- 1.5
}

inits{
  "intercept" <- 0.5
  "B_doorknock" <- -0.5
  "B_SOGS" <- 1.5
  "B_freq_thresh_m" <- 0
  "B_freq_thresh_f" <- 0.5
  "B_freq_thresh_w" <- 0
  "B_Years" <- 1.5
  "B_Exp_EGM_pc_hdi" <- -1.5
}

inits{
  "intercept" <- 1.5
}
```
"B_doorknock" <- -1.5
"B_SOGS" <- -0.5
"B_freq_thresh_m" <- 0
"B_freq_thresh_f" <- 1.5
"B_freq_thresh_w" <- 0
"B_Years" <- -0.5
"B_Exp_EGM_pc_hdi" <- 0.5
Listing 4: Random effects meta-analysis of the prevalence of moderate risk problem gambling, without moderators

model
{
 for(i in 1:N) {
 y[i] ~ dbin(p[i], s_size[i])
 logit(p[i]) <- intercept + theta[i]
 # Calculate the weights to help with estimating Q
 w[i] <- 1 / ((1/y[i] + 1/(s_size[i] - y[i])))
 theta[i] ~ dnorm(0, prec)
 resid[i] <- y[i] - fitted_est[i]
 fitted_est[i] <- p[i] * s_size[i]
 }

 # Calculate Q from Borenstein et al, p. 114, eq. 16.5
 N_params <- 1
 #Q <- (N - N_params) + C * tau.sq
 # Calculate Q from eq 16.1 on p. 109, Borenstein et al.
 Q <- sum(w * (logit(p) - intercept)^2))

 # Calculate I2
 # As defined on p. 1546, eq. 9 and 10 http://doi.org/10.1002/sim.1186
 H.sq <- Q / (N - N_params)
 # I.sq.b <- min((H.sq - 1.0) / max(H.sq, 10^-12), 1.0) * 100
 # As defined on Borenstein et al., p. 117, eq. 16.9
 I.sq <- min((Q - (N - N_params)) / max(Q, 10^-12), 1.0) * 100.0

 intercept ~ dnorm(0, 10^-6)
 tau~ dunif(0,10) # Suggested by http://dx.doi.org/10.1002/sim.2112
 tau.sq <- tau*tau
 prec <- 1/(tau.sq)
}
Convenience settings for runjags in R:
#monitor# intercept, tau, tau.sq, Q, I.sq, H.sq
#modules# glm on
#response# y
#residual# resid
#fitted# fitted_est

```r
### Initial values

```}

```r
inits{
  "intercept" <- -1.5
}
```

```r
inits{
  "intercept" <- -0.5
}
```

```r
inits{
  "intercept" <- 0.5
}
```

```r
inits{
  "intercept" <- 1.5
}
```
Listing 5: Random effects meta-analysis of the prevalence of moderate risk problem gambling, with moderators and informative priors

```r
model {

  for(i in 1:N) {
    y[i] ~ dbin(p[i], s_size[i])
    logit(p[i]) <- intercept +
      B_doorknock * doorknock[i] +
      B_SOGS * SOGS[i] +
      B_freq_thresh_m * freq_thresh_m[i] +
      B_freq_thresh_f * freq_thresh_f[i] +
      B_freq_thresh_w * freq_thresh_w[i] +
      B_Years * Years_before_2016[i] +
      B_Exp_EGM_pc_hdi * Exp_TG_EGM_pc_hdi[i] +
      theta[i]}

    theta[i] ~ dnorm(0, prec)

    # Inverse variance weights for I2
    w[i] <- 1 / (1/y[i] + 1/(s_size[i] - y[i]))

    # Repeat with no covariates for R2 calc
    y_full[i] ~ dbin(p_full[i], s_size[i])
    logit(p_full[i]) <- intercept_full + theta_full[i]
    theta_full[i] ~ dnorm(0, prec_full)

    # calculate residuals and fitted values to bring back into R
    resid[i] <- y[i] - fitted_est[i]
    fitted_est[i] <- p[i] * s_size[i]
  }

  # Priors
  FLATTEN_FACTOR <- 4

  intercept ~ dnorm(0, 10^-6)
  B_doorknock ~ dnorm(0.7269, (1/(0.1780*FLATTEN_FACTOR))^2)
  B_SOGS ~ dnorm(-0.5324, (1/(0.1395*FLATTEN_FACTOR))^2)
}
```
B_freq_thresh_m ~ dnorm(-0.1447, (1/(0.0579*FLATTEN_FACTOR))^2)
B_freq_thresh_f ~ dnorm(-0.3809, (1/(0.0559*FLATTEN_FACTOR))^2)
B_freq_thresh_w ~ dnorm(-0.5608, (1/(0.0610*FLATTEN_FACTOR))^2)
B_Years ~ dnorm(0, 10^-6)
B_Exp_EGM_pc_hdi ~ dnorm(0, 10^-6)

Heterogeneity statistics
N_params <- 8

Calculate tau and tau2
prec <- 1/(tau.sq)
tau.sq <- tau^2
tau ~ dunif(0,10) # Suggested by http://dx.doi.org/10.1002/sim.2112

As defined on p. 1546, eq. 9 and 10 http://doi.org/10.1002/sim.1186
H.sq <- (tau.sq + sigma.sq) / sigma.sq
sigma.sq <- (sum(w) * (N - 1)) / (sum(w)^2 - sum(w^2))
I.sq <- tau.sq / (tau.sq + sigma.sq)

R2 calc
intercept_full ~ dnorm(0, 10^-6)
tau_full ~ dunif(0,10)
tau.sq_full <- tau_full^2
prec_full <- 1/(tau.sq_full)
R.sq <- (1 - max(min(tau.sq / tau.sq_full, 1.0), 0.0)) * 100.0

Convenience settings for runjags in R:
#monitor# intercept, B_doorknock, B_SOGS, B_Years, B_Exp_EGM_pc_hdi, B_freq_thresh_m, B_freq_thresh_f, B_freq_thresh_w, tau, tau.sq, tau_full, tau.sq_full, I.sq, H.sq, R.sq
#modules# glm on
#response# y
#residual# resid
#fitted# fitted_est
Initial values

```r
inits{
  "intercept" <- -1.5
  "B_doorknock" <- -1.5
  "B_SOGS" <- 1.5
  "B_freq_thresh_m" <- 0
  "B_freq_thresh_f" <- 0.5
  "B_freq_thresh_w" <- 0
  "B_Years" <- 0.5
  "B_Exp_EGM_pc_hdi" <- -0.5
}

inits{
  "intercept" <- -0.5
  "B_doorknock" <- -0.5
  "B_SOGS" <- -1.5
  "B_freq_thresh_m" <- 0
  "B_freq_thresh_f" <- 0.5
  "B_freq_thresh_w" <- 0
  "B_Years" <- 1.5
  "B_Exp_EGM_pc_hdi" <- 1.5
}

inits{
  "intercept" <- 0.5
  "B_doorknock" <- -0.5
  "B_SOGS" <- 1.5
  "B_freq_thresh_m" <- 0
  "B_freq_thresh_f" <- 0.5
  "B_freq_thresh_w" <- 0
  "B_Years" <- 1.5
  "B_Exp_EGM_pc_hdi" <- -1.5
}
```
inits{
 "intercept" <- 1.5
 "B_doorknock" <- -1.5
 "B_SOGS" <- -0.5
 "B_freq_thresh_m" <- 0
 "B_freq_thresh_f" <- 1.5
 "B_freq_thresh_w" <- 0
 "B_Years" <- -0.5
 "B_Exp_EGM_pc_hdi" <- 0.5
}

Listing 6: Random effects meta-analysis of the prevalence of moderate risk problem gambling, with moderators and fixed priors

model
{
 for(i in 1:N) {
 y[i] ~ dbin(p[i], s_size[i])
 logit(p[i]) <- intercept +
 B_doorknock * doorknock[i] +
 B_SOGS * SOGS[i] +
 B_freq_thresh_m * freq_thresh_m[i] +
 B_freq_thresh_f * freq_thresh_f[i] +
 B_freq_thresh_w * freq_thresh_w[i] +
 B_Years * Years_before_2016[i] +
 B_Exp_EGM_pc_hdi * Exp_TG_EGM_pc_hdi[i] +
 theta[i]

 theta[i] ~ dnorm(0, prec)
 }

 # Inverse variance weights for I2
 w[i] <- 1 / (1/y[i] + 1/(s_size[i] - y[i]))

 # Repeat with no covariates for R2 calc
 y_full[i] ~ dbin(p_full[i], s_size[i])
 logit(p_full[i]) <- intercept_full + theta_full[i]
 theta_full[i] ~ dnorm(0, prec_full)

 # calculate residuals and fitted values to bring back into R
 resid[i] <- y[i] - fitted_est[i]
 fitted_est[i] <- p[i] * s_size[i]
}

Priors
intercept ~ dnorm(0, 10^-6)
B_doorknock ~ dnorm(0.7269, 10^24)
B_SOGS ~ dnorm(-0.5324, 10^24)
B_freq_thresh_m ~ dnorm(-0.1447, 10^24)
B_freq_thresh_f ~ dnorm(-0.3809, 10^24)
Heterogeneity statistics

N_params <- 8

Calculate tau and tau2
prec <- 1/(tau.sq)
tau.sq <- tau^2
tau ~ dunif(0, 10) # Suggested by http://dx.doi.org/10.1002/sim.2112

Calculate I2
As defined on p. 1546, eq. 9 and 10 in http://doi.org/10.1002/sim.1186
H.sq <- (tau.sq + sigma.sq) / sigma.sq
sigma.sq <- (sum(w) * (N - 1)) / (sum(w)^2 - sum(w^2))
I.sq <- tau.sq / (tau.sq + sigma.sq)

R2 calc
intercept_full ~ dnorm(0, 10^6)
tau_full ~ dunif(0, 10)
tau.sq_full <- tau_full^2
prec_full <- 1/(tau.sq_full)
R.sq <- (1 - max(min(tau.sq / tau.sq_full, 1.0), 0.0)) * 100.0

Convenience settings for runjags in R:
#monitor# intercept, B_doorknock, B_SOGS, B_Years, B_Exp_EGM_pc_hdi, B_freq_thresh_m, B_freq_thresh_f, B_freq_thresh_w,
tau, tau.sq, tau_full, tau.sq_full, I.sq, H.sq, R.sq
#modules# glm on
#response# y
#residual# resid
#fitted# fitted_est

B_freq_thresh_w ~ dnorm(-0.5608, 10^24)
B_Years ~ dnorm(0, 10^-6)
B_Exp_EGM_pc_hdi ~ dnorm(0, 10^-6)
Initial values

```r
inits{
  "intercept" <- -1.5
  "B_doorknock" <- -1.5
  "B_SOGS" <- 1.5
  "B_freq_thresh_m" <- 0
  "B_freq_thresh_f" <- 0.5
  "B_freq_thresh_w" <- 0
  "B_Years" <- -0.5
  "B_Exp_EGM_pc_hdi" <- -0.5
}

inits{
  "intercept" <- -0.5
  "B_doorknock" <- -0.5
  "B_SOGS" <- -1.5
  "B_freq_thresh_m" <- 0
  "B_freq_thresh_f" <- 0.5
  "B_freq_thresh_w" <- 0
  "B_Years" <- 1.5
  "B_Exp_EGM_pc_hdi" <- 1.5
}

inits{
  "intercept" <- 0.5
  "B_doorknock" <- -0.5
  "B_SOGS" <- 1.5
  "B_freq_thresh_m" <- 0
  "B_freq_thresh_f" <- 0.5
  "B_freq_thresh_w" <- 0
  "B_Years" <- 1.5
  "B_Exp_EGM_pc_hdi" <- -1.5
}

inits{
  "intercept" <- -1.5
  "B_doorknock" <- -1.5
  "B_SOGS" <- -1.5
  "B_freq_thresh_m" <- -0
  "B_freq_thresh_f" <- -0.5
  "B_freq_thresh_w" <- 0
  "B_Years" <- 1.5
  "B_Exp_EGM_pc_hdi" <- -1.5
}
```