Microarray_Preprocessing

1. Loading phase

Loading of the required libraries

TCGAbiolinks
Queries and downloads relevant data from the Genomic Data Commons (GDC) of the National Cancer Institute (NCI).

ArrayQualityMetrics
Performs a series of comprehensive quality checks on the microarray dataset.

Affy
Contain functions for pre-processing Affymetrix microarray dataset.

limma
Used for differential expression analysis of gene expression microarray data.

```r
#library(TCGAbiolinks)
#library(arrayQualityMetrics)
library(affy)
library(limma)
library(genefilter)
```

Barcodes of sensitive/resistant patients identified from the TCGA-OV cohort is loaded.

```r
# read in TCGA patient barcodes
OV_sensitive <- read.table("sensitive_barcodes.txt",as.is = TRUE)
OV_resistant <- read.table("resistant_barcodes.txt",as.is = TRUE)
```

Using TCGAbiolinks package, raw microarray data (HT_HG-U133A) from the patient’s primary solid tumor is downloaded from the NCI GDC database.

```r
# search gdc & download the raw microarray data
OV_sensitive_query <- GDCquery(barcode = OV_sensitive$V1,
                              project = c("TCGA-OV"),
                              data.category = "Raw microarray data",
```
data.type = "Raw intensities",
legacy = TRUE,
platform = c("HT_HG-U133A"),
sample.type = "Primary solid Tumor"
)

OV_resistant_query <- GDCquery(barcode = OV_resistant$V1,
project = c("TCGA-OV"),
data.category = "Raw microarray data",
data.type = "Raw intensities",
legacy = TRUE,
platform = c("HT_HG-U133A"),
sample.type = "Primary solid Tumor"
)

GDCdownload(OV_sensitive_query, method = "api", directory = "TCGA_OV_sensitive_data")
GDCdownload(OV_resistant_query, method = "api", directory = "TCGA_OV_resistant_data")

2. Preprocessing phase

Read affy files

1. Using the Affy package, read in the affy files (.CEL) into a single affybatch variable.
2. Assign phenotype to each batch, 0 for chemo-sensitive and 1 for chemo-resistant.
3. Combine the two batches for pre-processing.

```r
# Read in the affy files

OV_sensitive_list <- list.files("./TCGA_OV_sensitive_data/", ".*CEL", recursive = TRUE, full.names = TRUE)
OV_resistant_list <- list.files("./TCGA_OV_resistant_data/", ".*CEL", recursive = TRUE, full.names = TRUE)

Sens_Batch <- ReadAffy(filenames = OV_sensitive_list)
Res_Batch <- ReadAffy(filenames = OV_resistant_list)
```
Assigning phenotype - sensitive as 0, resistant as 1

Sens_Batch@phenoData$data$sample <- 0
Res_Batch@phenoData$data$sample <- 1

Combine two phenotypes
CombinedBatch <- merge(Sens_Batch, Res_Batch)

553536 probes exists here (PM & MM)

Background correction & normalization

Normalization removes systematic biases and makes comparisons between arrays more meaningful. We use RMA background correction and quantile normalization.

```
# Background correction
# outputs log2-transformed expression values
# "normalize" flag - logical value. If TRUE normalize data using quantile normalization
# "background" flag - logical value. If TRUE background correct using RMA background correction
eset.rma = rma(CombinedBatch, background = TRUE, normalize = TRUE)

## Background correcting
## Normalizing
## Calculating Expression

#22277 probes here

# Control probes in the array will be removed using featureFilter (probe starting with "AFFX")
# Also remove probes with no Entrez Gene identifiers
eset.rma.filtered <- featureFilter(eset.rma, require.entrez=F, remove.dupEntrez=F)

#22215 probes here

**Quality check**

Using the arrayQualityMetrics library, we perform a quality assessment of the array.

arrayQualityMetrics(eset.rma.filtered, force = TRUE, outdir = 'report')```
From the inspection of an outlier detection, it is evident that two subjects, num.26 ("FEAST_p_TCGA_B20_21_Expression_HT_HG-U133A_96-HTA_F04_516474.CEL") and num.206 ("FEAST_p_TCGA_B20_21_Expression_HT_HG-U133A_96-HTA_G06_516372.CEL"), are strong outliers.

We therefore dropped these two subjects from our population pool.

Two duplicated samples that map to same subject were also removed.

```r
Identify the two outliers
potential_outlier1 = match("FEAST_p_TCGA_B20_21_Expression_HT_HG-U133A_96-HTA_F04_516474.CEL", sampleNames(eset.rma.filtered))
potential_outlier2 = match("FEAST_p_TCGA_B20_21_Expression_HT_HG-U133A_96-HTA_G06_516372.CEL", sampleNames(eset.rma.filtered))

Remove two duplicate subjects we identified (from manual check)
Duplicate1 = match("TARRE_p_MultiPlate_TCGA_SS_MA_Ref_HT_HG-U133A_96-HTA_A06_586078.CEL", sampleNames(eset.rma.filtered))
Duplicate2 = match("AGARS_p_TCGA_B12_RNA_ReDo_HT_HG-U133A_96-HTA_C07_443130.CEL", sampleNames(eset.rma.filtered))

remove from the expression set
eset.rma.outlier_controlled = eset.rma.filtered[, -potential_outlier1]
eset.rma.outlier_controlled = eset.rma.outlier_controlled[, -potential_outlier2]
eset.rma.outlier_controlled = eset.rma.outlier_controlled[, -Duplicate1]
eset.rma.outlier_controlled = eset.rma.outlier_controlled[, -Duplicate2]
```
After background correction, normalization, and outlier filtering, 234 subjects (135 sensitive and 99 resistant) and 22,215 probes remained. This expression matrix exported for further analysis.

```
dim(eset.rma.outlier_controlled) # number of ppl & probes
Features Samples
22215 234

table(eset.rma.outlier_controlled@phenoData$data$sample) # 0 = sensitive, 1 = resistant
##
0 1
##135 99
```