Supplementary Material - Economic results using all direct medical costs collected during the trial

(Biological tests, anti-D immunoglobulin injections, visits and hospital admissions)

Incremental cost-effectiveness results

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Average cost (£)</th>
<th>Performance * (%)</th>
<th>Δ Cost (£)</th>
<th>Δ Performance * (%)</th>
<th>ICER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usual care</td>
<td>3 004</td>
<td>64%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RHD genotyping</td>
<td>3 259</td>
<td>88%</td>
<td>255</td>
<td>24%</td>
<td>1 059</td>
</tr>
</tbody>
</table>

* Performance is defined as the percentage of RHD genative women receiving appropriate management.

Based on costs related to both RHD status (tests, anti-D injections and visits) and hospital stays (for delivery and other admissions during pregnancy)
Cost-effectiveness plane

Scatter plot on the cost-effectiveness plane showing the difference in costs (including all hospital admissions) and performance from GENIFERH1 data using 1,000 bootstrap replicates. The genotyping arm cost of resources per patient was on average €255 more expensive than the control arm. The genotyping arm was more performant with an increase in effectiveness of 24%.
Cost-effectiveness acceptability curve

Cost-effectiveness acceptability curve showing the probability that foetal RHD genotyping is cost-effective compared to usual care using all direct costs recorded including hospital stays.

ICER=€ 1059