Survey regarding the recommendation for retiring the statistical significance from scientific publications

You have been invited to participate in this survey as a signatory of the paper "Scientists rise up against statistical significance" recently published in Nature (21 March 2019; Vol 567, p.305-307).

This survey was designed to be responded anonymously. However, you can send us any comment which will be treated confidentially.

* Required

1. Country of residence *

2. Gender *

 Mark only one oval.

 ○ Female
 ○ Male

3. Date of birth

 Example: January 7, 2019
4. Currently, how much do you agree with retiring of statistical significance of future scientific publications? *

Mark only one oval.

- [] Strongly agree with the retiring
- [] Partially agree
- [] Neither agree nor disagree
- [] Partially disagree
- [] Strongly disagree

5. In your future publications, how likely are you to use the concept of "statistical significance"? *

Mark only one oval.

- [] Never (I expect to never use it again)
- [] Unlikely (It is unlikely that I will use it again)
- [] Neutral, or it depends on the occasion
- [] Likely (It is likely that I will use it again)
- [] Always (I will use it everytime I have the chance)

6. Which of the following factors influenced your decision to sign the paper on retiring of statistical significance? (you can select more than one) *

Check all that apply.

- [] arguments against the use of statistical significance
- [] arguments in favor of the use of alternative concepts
- [] the prestige of the authors of the publication
- [] the prestige of the journal (Nature)
- [] Other: ________________________________
7. Assuming the absence of biases and confounding, consider a p-value of 0.06. Which of the following interpretations would be the most appropriate?

Mark only one oval.

- [] If the null hypothesis is true, the estimated probability of obtaining results at least as extreme as observed is 6%.
- [] If the alternative hypothesis is true, the estimated probability of obtaining results at least as extreme as observed is 94%.
- [] The estimated probability that the null hypothesis is true is 6%.
- [] It would be expected to replicate this result in 94% of the studies.
- [] If I reject the null hypothesis, there is a 6% probability that I am making a mistake.

8. Please feel at ease to send us any comment (optional).

This content is neither created nor endorsed by Google.

Google Forms