Example Usage of Package cprobit

The cprobit package includes a realistic dataset (bg_variability) generated based on the dataset analysed in the blood glucose study in “Robust estimation of the effect of an exposure on the change in a continuous outcome”.

This study investigated the effect of the baseline glycemic variability on the change in daily glycemic variability in the two subsequent days (referred to as the first and second follow-up), using data from 1200 subjects. Daily glycemic variability was measured using the standard deviation of the blood glucose readings on each day. Each row in the dataset corresponds to one follow-up measurement from each subject, and the first 10 rows are shown below:

```r
# Firstly, use the following command to install the `cprobit` package from Github (package `devtools` required):
# devtools::install_github("nyilin/cprobit")
library(cprobit)
data("bg_variability")
dim(bg_variability)
## [1] 2400    7
knitr::kable(head(bg_variability, 10), digits = c(0, 0, 2, 0, 2, 0, 0))
```

<table>
<thead>
<tr>
<th>subject_id</th>
<th>case_id</th>
<th>y</th>
<th>t</th>
<th>sd0</th>
<th>age</th>
<th>female</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>9.94</td>
<td>0</td>
<td>1.30</td>
<td>77</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>9.10</td>
<td>1</td>
<td>1.30</td>
<td>77</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>13.61</td>
<td>0</td>
<td>1.62</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>11.48</td>
<td>1</td>
<td>1.62</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>10.49</td>
<td>0</td>
<td>3.01</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>13.13</td>
<td>1</td>
<td>3.01</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>18.56</td>
<td>0</td>
<td>2.29</td>
<td>49</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>19.41</td>
<td>1</td>
<td>2.29</td>
<td>49</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>14.52</td>
<td>0</td>
<td>1.33</td>
<td>56</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>12.78</td>
<td>1</td>
<td>1.33</td>
<td>56</td>
<td>1</td>
</tr>
</tbody>
</table>
```

Variables subject_id = 1, ..., 1200 and case_id = 1, 2 are identifiers of subjects and follow-ups respectively. Variable y denotes the continuous outcome, i.e., the glycemic variability in the first and second follow-ups. Variable t = 0, 1 is the binary indicator for the second follow-up. Variable sd0 denotes the time-invariant exposure, i.e., the baseline glycemic variability. Age (age) and gender (female = 1 for female and female = 0 for male) are two time-invariant confounders.

Equation [13] of the manuscript presents the random effects model assumed when assessing the association between the baseline measurement and the change in the follow-up measurements:

\[
y_{ij} = \alpha_i + \beta_1 t_{ij} + \beta_2 s_{d0i} + \beta_3 t_{ij} s_{d0i} + \beta_4 a_{gei} + \beta_5 f_{emalei} + \varepsilon_{ij}.
\]

The effect of interest is \( \beta_3 \), because it is the the coefficient of the time-invariant exposure, sd0, in the difference model:

\[
\Delta y_i = \Delta y_{i2} - y_{i1} = \beta_1 + \beta_3 s_{d0i} + \Delta \varepsilon_i,
\]

where \( \Delta y_i = y_{i2} - y_{i1} \) and \( \Delta \varepsilon_i = \varepsilon_{i2} - \varepsilon_{i1} \) (see equation [14] in the manuscript).
The following command implements the three-step workflow for estimating $\beta_3$. Note that time-invariant components in the random effects model, i.e., $sd0$, $age$ and $female$, are not included in the cprobit model because they are eliminated by working on the difference data.

```r
model <- cprobit(formula = y ~ t + t:sd0, dat = bg_variability,
 index = c("subject_id", "case_id"),
 transform = NULL, resid_pval_threshold = 0.05)
summary(model, plot = TRUE)
```

## ## Results from Step 2:
##
## Lilliefors test p-value for normality assumption
## without transformation: 0.011 < 0.050
##
## Estimated coefficients for observed outcome:
##
## | var        | est  | se   | ci_lower | ci_upper | pval  |
## |------------|------|------|----------|----------|-------|
## | t          | 0.668| 0.341| 0.000    | 1.335    | 0.05  |
## | t:sd0      | -0.265| 0.114| -0.488   | -0.041   | 0.02  |
##
## Results from Step 3:
##
## Box-Cox transformamtion on the outcome:
##
## | var        | est  | se   | ci_lower | ci_upper | pval  |
## |------------|------|------|----------|----------|-------|
## | lambda     | 0.386| 0.056| 0.279    | 0.498    | 0     |
##
## Lilliefors test p-value for normality assumption
## after transformation: 0.314 >= 0.050
##
## Estimated coefficients for transformed outcome:
##
## | var        | est  | se   | ci_lower | ci_upper | pval  |
## |------------|------|------|----------|----------|-------|
## | t          | 0.129| 0.066| 0.000    | 0.258    | 0.05  |
## | t:sd0      | -0.051| 0.022| -0.094   | -0.008   | 0.02  |

### Normal qq–plot for observed outcome
![Sample Quantiles vs Theoretical Quantiles](image1)

### Normal qq–plot for transformed outcome
![Sample Quantiles vs Theoretical Quantiles](image2)

```r
table2_row2 < data.frame(
 Method = "cprobit",
)```
By specifying `transform = NULL`, Lilliefors test of residuals in Step 2 is used to identify the need for a Box-Cox transformation of the outcome. With Lilliefors p-value in Step 2 less than the selected threshold of 0.05, the Box-Cox transformation on the outcome in Step 3 is used to address non-normality, with estimated transformation parameter 0.39 (95% CI: 0.28, 0.50), and the Lilliefors test (p-value = 0.314) suggests the adequacy of the normality assumption after transformation. The estimated exposure effect on the transformed outcome is -0.051 (95% CI: -0.094, -0.008). Residual qq-plots corroborated the need for the Box-Cox transformation. These findings are similar to the results from the blood glucose study.