1 Computational notes

Marginal distribution for post-treatment model

Although the models that we have defined for the post-treatment data are non-linear in their parameters, they are all linear in their random terms conditional on the value of u_i^+:

$$ y_{post:i}|U_i^+ = u_i^+ = g(t_{post:i}, u_i^+, \tau_i) + W_{post:i} + e_{post:i} $$

$$ = \begin{pmatrix} \phi_{1:i} + (u_i^+ - \phi_{1:i}) \exp(-\exp(\phi_{2:i}) t_{post:i1}) \\ \vdots \\ \phi_{1:i} + (u_i^+ - \phi_{1:i}) \exp(-\exp(\phi_{2:i}) t_{post:ipost:i}) \end{pmatrix} + W_{post:i} + e_{post:i} $$

$$ = \begin{pmatrix} \phi_{1:i} (u_i^+) + \tau_i + (u_i^+ - (\phi_{1:i} (u_i^+) + \tau_i)) \exp(-\exp(\phi_{2:i} (u_i^+)) t_{post:i1}) \\ \vdots \\ \phi_{1:i} (u_i^+) + \tau_i + (u_i^+ - (\phi_{1:i} (u_i^+) + \tau_i)) \exp(-\exp(\phi_{2:i} (u_i^+)) t_{post:ipost:i}) \end{pmatrix} + W_{post:i} + e_{post:i} $$

$$ \tau_i \sim N(0, P) $$

$$ W_{post:i} \sim MVN(0, \Sigma_{post:i}) $$

$$ e_{post:i} \sim MVN(0, \sigma^2 I_{n_{post:i}}). $$

As such, for the models defined, the post-treatment data follows a marginal multivariate normal distribution conditional on the value of u_i^+, with mean vector given by:

$$ E[y_{post:i}|U_i^+ = u_i^+] = \begin{pmatrix} \phi_{1:i} (u_i^+) + (u_i^+ - \phi_{1:i} (u_i^+)) \exp(-\exp(\phi_{2:i} (u_i^+)) t_{post:i1}) \\ \vdots \\ \phi_{1:i} (u_i^+) + (u_i^+ - \phi_{1:i} (u_i^+)) \exp(-\exp(\phi_{2:i} (u_i^+)) t_{post:ipost:i}) \end{pmatrix}, $$

and covariance matrix given by:

$$ \text{Var}[y_{post:i}|U_i^+ = u_i^+] = Q_i + \Sigma_{post:i} + \sigma^2 I_{n_{post:i}}, $$

where the j,kth element of Q_i, $q_{j,k}$, is given by:

$$ q_{j,k} = \text{Cov}[\{1 - \exp(-\exp(\phi_{2:i} (u_i^+)) t_{post:i})\} \tau_i, \{1 - \exp(-\exp(\phi_{2:i} (u_i^+)) t_{post:ik})\} \tau_i] $$

$$ = (1 - \exp(-\exp(\phi_{2:i} (u_i^+)) t_{post:i})) \times (1 - \exp(-\exp(\phi_{2:i} (u_i^+)) t_{post:ik})) \times P. $$

Coding for positive-only latent variable

The ADMB software is designed to find maximum likelihood estimates for a function that is differentiable in terms of all of its parameters and latent variables. Because of this conditional statements, such as `if/then` statements and `max (a, b)`, involving the values of parameters or latent variables are not supported. Instead, a very steep logistic function is used to obtain u_i^+ from u_i:

...
double high_c = 1000000;
dvariable u_pos = u/(1 + mfexp(-high_c*u));

The double defined here is a standard C++ double-precision floating point constant, whilst the dvariable is a class of object specific to ADMB that is designed to store the necessary information regarding gradient structure for optimisation.

It is also worth noting that we use the function mfexp(value) in place of exp(value) throughout, as the former is an adjusted version of the standard function that guards against numerical under- or overflow for large absolute values of the function argument (|value| > 60). This can particularly be a problem when dealing with nested exponential functions.
2 Evaluation of residuals

We present here plots of residuals obtained from the fit of Model 6 to the UK Register of Seroconverters dataset. The approach taken is similar that used previously by Stirrup et al.\[1\] in assessing models for pre-treatment CD4 cell counts alone, which in turn was developed from suggestions made by Fitzmaurice, Laird and Ware\[2\]. Firstly we note that, for pre-treatment CD4 cell counts, the distribution for the full set of observations for each patient is multivariate normal conditional on the value of the latent scaling variable associated with the pre-treatment fractional Brownian motion process:

\[
y_{\text{pre}} = X_i \beta + Z_i b_i + W_{\text{pre}} + e_{\text{pre}}
\]

\[
b_i \sim MVN(0, \Psi)
\]

\[
W_{\text{pre}} | w_{1:i} = w_{1:i} \sim MVN(0, \frac{1}{w_{1:i}} \Sigma_{\text{pre}})
\]

\[
e_{\text{pre}} \sim MVN(0, \sigma^2 I_{\text{pre}}).
\]

We can therefore obtain an estimate of the pre-treatment marginal covariance matrix specific to each patient based on the posterior predictive mode of their latent scaling variable, \(\hat{w}_{1:i}\):

\[
\hat{V}_{\text{pre}} = Z_i \hat{\Psi} Z_i^T + \frac{1}{\hat{w}_{1:i}} \hat{\Sigma}_{\text{pre}} + \hat{\sigma}^2 I_{\text{pre}}.
\]

If the model parameters and the value of the scaling variable were known, then the distribution of the transformed marginal residuals using the inverse of the Cholesky decomposition of the covariance matrix for each individual, \(V_{\text{pre}}\), would be normally and independently distributed with mean 0 and variance 1:

\[
V_{\text{pre}} = L_i L_i^T (y_i - X_i \beta) \sim MVN \left(0, I_{n_i} \right).
\]

Plots of the Cholesky-transformed residuals of pre-treatment observations for Model 6, with the covariance matrix estimated for each patient based on the posterior predictive mode of their latent scaling variable, \(\hat{w}_{1:i}\), are presented in Figures 1 and 2.

For post-treatment observations, the distribution for the full set of observations for each patient is multivariate normal conditional on the value of both the true baseline CD4 value and the latent scaling variable associated with the post-treatment fractional Brownian motion process:

\[
y_{\text{post}} | t^+_i = u^+_i = g \left(t_{\text{post}}; i, u^+_i, \tau_i \right) + W_{\text{post}} + e_{\text{post}}
\]

\[
\tau_i \sim N(0, P)
\]

\[
W_{\text{post}} | w_{2:i} = w_{2:i} \sim MVN(0, \frac{1}{w_{2:i}} \Sigma_{\text{post}})
\]

\[
e_{\text{post}} \sim MVN(0, \sigma^2 I_{\text{post}})
\]

As noted in Appendix 1 this forms a multivariate normal distribution conditional on \(u^+_i\) and \(w_{2:i}\), given that \(g \left(t_{\text{post}}; i, u^+_i, \tau_i \right)\) is linear in \(\tau_i\). As such, a covariance matrix can be
constructed for the post-treatment observations of each patient based on the posterior predictive modes of u^+_i and w_{2i}, and Cholesky-transformed residuals can be calculated as for the pre-treatment data. Such plots are presented for Model 6, Figures 3 and 4.

The residual plots shown in Figures 1–4 do not indicate any substantial model mis-specification. However, following Stirrup et al. [1] we also consider plots summarising Cholesky-residuals conditional on multiple samples from the joint posterior predictive distribution of the latent variables, using the approximate multivariate normal distribution as returned by ADMB. For the latent scaling variables relating to the pre- and post-treatment stochastic process components of the model, sampling was based on the bivariate normal a and b variables as used for the Laplace approximation of the integral, with transformation to the necessary gamma variates as described in the paper. Plots equivalent to Figures 1–4, but based on 1000 sets of samples, are shown in Figure 5. These plots are similar to those based on the posterior predictive modes of the latent variables, and so provide further evidence for adequacy of the model fit.

As a further check of the model structure developed, the fitted Model 6 was used to simulate pre- and post-treatment CD4 counts of a cohort of 100 patients. As we have not developed a probabilistic model for the timing of initiation of treatment, and in order to generate a range of different conditions, these patients were randomised to initiate treatment either: (1) immediately at the time of seroconversion, (2) 1 year after seroconversion or at the first observation below (3) 500, (4) 350 or (5) 200. Data were generated on the square-root(CD4) scale, and cut-off points for initiation of treatment were accordingly transformed to this scale. Each patient, up until the point of treatment initiation, was scheduled to be observed at 4-month intervals from seroconversion; treatment was initiated at 8 years if the threshold for a specific patient had not been triggered before this point. Following treatment initiation, observations were simulated after 1, 2, 3 and 4 months, and at 4-month intervals thereafter up until a maximum of 5 years. An R-script to generate such a cohort is provided as supporting information to this paper, along with ADMB template files to refit Model 4 and Model 6 to the simulated dataset. A plot of CD4 counts from the simulated cohort is provided in Figure 6. This plot is visually consistent with the equivalent plot of 100 randomly selected patients from the real dataset, although in the artificial dataset no allowance has been made for irregular timing of observations or of loss-to-follow-up or administrative censoring of patients. This comparison could be described as a posterior predictive check [3].
Figure 1 Quantile-quantile plot of Cholesky-transformed residuals of pre-treatment observations for Model 1, calculated using the posterior predictive mode of the latent scaling variable \(\tilde{w}_{1,1} \) for each patient.

Figure 2 Plot of Cholesky-transformed residuals of pre-treatment observations for Model 1 against time from seroconversion, calculated using the posterior predictive mode of the latent scaling variable \(\tilde{w}_{1,1} \) for each patient. A LOESS regression line with 95% confidence interval has been added.
Figure 3 Quantile-quantile plot of Cholesky-transformed residuals of post-treatment observations for Model1, calculated using the posterior predictive mode of the baseline CD4 value \tilde{z}_i and the latent scaling variable $\tilde{y}_{2,i}$ for each patient.

Figure 4 Plot of Cholesky-transformed residuals of post-treatment observations for Model1 against time from initiation of HAART, calculated using the posterior predictive mode of the baseline CD4 value \tilde{z}_i and the latent scaling variable $\tilde{y}_{2,i}$ for each patient. A LOESS regression line with 95% confidence interval has been added.
Figure 5 Plots of Cholesky-transformed residuals of pre- (a,b) and post- (c,d) treatment observations for Model6, calculated based on 1000 draws from the approximate posterior predictive distribution of the latent variables for each patient. The quantile-quantile plots (a,c) show the 2.5th, 50th and 97.5th percentiles of the sample quantiles for each theoretical quantile corresponding to the total number of observations. (b) and (d) show boxplots of the mean residual across repeated samples, with observations grouped according to the nearest multiple of 6 months.
Figure 6 Plot of CD4 counts relative to the initiation of HAART for a simulated cohort of 100 patients based on Model 6.
3 Model fitting to simulated data

In order to check that the use of natural cubic splines would be able to recover non-linear functions for $\phi_1(u_i^+)\) and $\phi_2(u_i^+)$, even if the probability model as a whole were not correctly specified, we simulated cohorts of patients based on a modified version of Model6. The point estimates of parameters were used as obtained from the UK Register of Seroconverters dataset, but to simplify the analysis the recovery of CD4 counts after initiation of treatment was assumed to depend only on the ‘true’ CD4 value at baseline and not on the time elapsed from seroconversion to initiation. Furthermore, $\phi_1(u_i^+)$ and $\phi_2(u_i^+)$ were modified to follow non-linear sigmoidal functions:

$$
\phi_1(u_i^+) = 15 + \frac{15}{1 + \exp(-0.5 \ast (u_i^+ - 15))}
$$

$$
\phi_2(u_i^+) = \frac{2}{1 + \exp(-0.5 \ast (u_i^+ - 20))}.
$$

Twelve cohorts of 250 patients were generated, using the observation and treatment initiation schedule as described in Appendix 2, and Model3 was fitted to each cohort — i.e. with a natural cubic spline function to approximate $\phi_1(u_i^+)$ and $\phi_2(u_i^+)$, without any dependence on the time from seroconversion to treatment initiation. The sample size was chosen for convenience, as the maximum number of separate processes that could be initiated from R using the cluster system available. Convergence of maximum likelihood estimates of the model parameters was achieved for 10/12 of these simulated cohorts. The fitted functions for $\phi_1(u_i^+)$ and $\phi_2(u_i^+)$ in each case are shown in Figures 7 and 8, respectively. A histogram of the ‘true’ CD4 values at treatment initiation for each patient in the first cohort is shown in Figure 9.

The plots of the fitted functions for $\phi_1(u_i^+)$ and $\phi_2(u_i^+)$ indicate that natural cubic splines can be used to approximate non-linear relationships between latent variables, even if the probability model as a whole is not completely correctly specified. However, the natural cubic splines are constrained to a linear function beyond the upper and lower boundary knots, and this clearly affects the ability of the approach to model response to treatment in patients with very high or very low baseline CD4 at treatment initiation. Adding more knots to the natural cubic spline basis would allow more flexibility in the fitted function, but at the cost of reduced computational stability. Hence these plots indicate that caution is required when interpreting predictions or attempting to draw inferences regarding patients with unusually high or low CD4 values at treatment initiation, and reinforce the general principle that fitted relationships should not be extrapolated beyond the range of values observed in the dataset under analysis.
Figure 7 Plots of estimates of $\phi_1(u_i^x)$ (black curved line, with dotted 95% CI) obtained by fitting Model 3 to 12 simulated cohorts of 250 patients. The function specified as used to generate the data is shown in red. The vertical black lines show the positions of knots for restricted natural cubic spline basis.
Figure 8 Plots of estimates of $\phi_2(u_i)$ (black curved line, with dotted 95% CI) obtained by fitting Model 3 to 12 simulated cohorts of 250 patients. The function specified as used to generate the data is shown in red. The vertical black lines show the positions of knots for restricted natural cubic spline basis.
Figure 9 Histogram of ‘true’ CD4 values at treatment initiation for each patient in the first cohort of the simulation study.
References