csn-smR2
AAUCGAUCCACCUCUUCUUGACU

$dG = -33.9184$
Output of cir_graph()
by E. Stewart and M. Zuker

csn-smR3
CCGACGUCGUCGGAGCUGGCC

d_6 = -59.8187

csn-smR3
CCGACGUCGUCGGAUGCGGCC
Output of sir_graph()
by E. Stewart and M. Zuker

d6 = -48.7191

csn-smR4-5p-1
GAACUGGAGGACACACGCCUAAAG
\(d_6 = -48.7 \times 10^{-2} \)

csn-smR4-3p-1
UGGAGUUCACUGGCUGGGGAGC
csn-smR4-5p-2
GAACUGGAGGACACACGCGUAAG

d6 = -49.8193
Output of air_graph ()
by E. Stewart and M. Zuker

csn-smR4-3p-2
UGGAGUUCCAACUGGCUGGGGAGC

dG = -49.8194
Output of aic_graph ()
by E. Stewart and M. Zolner

csn-smR5-5p-1
GACUUCUUUGGAUUGAGCCC

d6 = -99.7195
Output of sir_graph ()
by E. Stewart and M. Zuker

csn-smR5-3p-1
UUCAAUCCGAAUAAAGUCCCC

d6 = -99.7196
Output of air_graph ()
by E. Stewart and M. Zolner

csn-smR5-3p-2
UUCAAUCCGAAUAAAGUCCCC

d_6 = -94.9198
Output of sic_graph ()
by E. Stewart and N. Zuker

csn-smR6
GGAGAAGAGUGAGCUUGAACC

dG = -55.61202
\[d_\delta = -52.6 \pm 203 \]
Output of sir_graph (...) by E. Stewart and M. Zoller

csn-smR7-3p
UGAUUCUGUAUUUGAUUUCUGUAU

dG = -52.6^204
Output of sir_graph ()
by E. Stewart and M. Zuker

csn-smR8
CAUAUUAUAGAAUCCGAACAUA

d6 = -66.6kcal
\[d_6 = -73.7 \pm 208 \]

csn-smR9-5p-1

UUUGAAAGGGAAUUGAAAAAGGU
Output of air_graph ()
by E. Steward and M. Zulka

\[d_6 = -73.7 \times 10^9 \]

csn-smR9-3p-1
AUUUCCCUUUUCCAAAAUUCUUCUCCC
Output of sir_graph()
by E. Stewart and M. Zuker

$\Delta G = -84.6 \pm 2.0$

csn-smR9-5p-2
UUUGAAAGGGAAUGGAAAAGGU
Output of air_graph()
by E. Stewart and M. Zuker

csn-smR9-3p-2

AAAUUUCACAUAGUUUCACACACACAC
Output of cir_graph() by E. Stewart and M. Zakin

d_{6} = -68.9 \mu \text{m}

csn-smR10-1
UUUCACAGAAUGAGGCGUUGA
\[d_6 = -58.8215 \]

csn-smR10-2

UUUCACAGAAUGAGCGUUGA
Output of sir_graph ()
by E. Stewart and M. Zolkos

csn-smR11-1
UUGACAGUUUUGAGCCAUUUG

dG = -46.7 \pm 2.17
Output of sir_graph ()
by E. Stewart and M. Zuker

csn-smR11-2
UUGACAGUUUGAGCCAUUUG

d6 = -49.7²19
Output of aim_graph() by E. Steward and M. Zuker

\[d_6 = -81.7 \pm 221 \]

csn-smR12-1
AUUAGUUUAGAUUGUAGGACC
Output of sir_graph()
by E. Stewart and M. Zuker

dG = -89.82

csn-smR12-2
AUUAGUUAGAUUGUAGGACC
cns-smR13-1
UCUGGUUCUAUGAUAUGUUUC

d_6 = -66.6225
Output of airc_graph ()
by E. Stewart and M. Zuker

csn-smR13-2
UCUGGUUCUAUGAUAAUGUUUC

dG = -66.62 \pm 2.7
\[dG = -27.7 \text{ kcal/mol} \]

csn-smR14

UCUCGAUGAGAAUGGUUAC
Output of arc_graph () by E. Stewart and M. Zaker

csn-smR15-5p
UUUGAAAAAGAAAAUGAAAAAGGU

d6 = -75.7 \times 230
Output of air_graph ()
bys.E. Stewart and M. Zlker

d6 = -75.7 ± 231

csn-smR15-3p
UUUUCUUUUCCUUUUCAAAUC
Output of air_graph ()
by E. Stewart and M. Zuker

csn-smR17-5p
UUAAACAUGAUUGGUAGUCCGAAU

d6 = -69.7234
Output of cir_graph ()
by S. Stewart and H. Zukan

d6 = -69.7235

csn-smR17-3p
AUGUCGUUUUGAUACAUUGGAGCC
Output of seq_graph() by E. Stewart and M. Zuker

csn-smR18-5p
AAUGGCUCAAAUGUAUCAAAACGA

d_6 = -48.9236
Output of sirc_graph ()
by E. Stewart and M. Zuker

d\text{0} = -48.9 \times 237

csn-smR18-3p
ACGUCAUUUGAGACAUUCGAAACC
Output of air_graph ()
by E. Stewart and M. Zukan

csn-smR19-5p
AUCCGUCCAAAAGCUAUGAGAGGC

d6 = -68.6238
$d_6 = -68.6 \pm 239$

csn-smR19-3p
CACAGUUUUUGUACUGGACAGCCU
Output of sir_graph ()
by E. Stewart and M. Zuker

d6 = -77.9\times10^{240}
csn-smR20-5p
AAAAGUUUUACCAAAUGUCUCACA
\[d_6 = -77.9 \times 241 \]

csn-smR20-3p
ACACAAUGUGGGUCUCAUGUGGA
Output of `air_graph()`
by E. Stewart and M. Zolner

csn-smR21-5p
UGGACUUUUUGGUGGCCCU

dG = -34.1 ± 242
Output of sir_graph ()
by E. Stewart and M. Zuker

csn-smR22
AGAACUCAGACACAGAAAAAUAUC

d6 = -91.21245
Output of air_graph()
by E. Stewart and M. Zuker

d6 = -29.57250

csn-smR25
AAGAACUAAGAGCAGCUUGU
Output of sir_graph ()
by E. Stewart and M. Zuker

csn-smR27
AAAAUUUAUGACCCUUGGAUUACC

d6 = -68.1 \times 10^{-254}
Output of air_graph ()
by E. Stewart and M. Zuker

\[d\delta = -53.3 \text{ kcal} \]

csn-smR28-5p
AAAGUUUUGUGACCCUUGGAUUAC
Output of sir_graph() by E. Stewart and H. Zolkar

csn-smR28-3p
AAAAGCACCACACACACUAAUCAAGG
Output of sir_graph ()
by E. Stewart and M. Zolner

csn-smR29
UUUGGUAGAAAAUUUGGUUAUC

t6 = -70.6%259
Output of mcr_graph ()
by E. Stewart and M. Zuker

\[dG = -114.3 \] 260

csn-smR30
AUUGUGUGGUUGAGAUUUACUGGC
Output of sir_graph ()
by E. Stewart and M. Zuker

csn-smR31-5p
AUUGUGUGGUUGAGAUUUAAUUGGC

dG = -75.6262
Output of sirc_graph() by E. Stewart and M. Zuker

csn-smR31-3p
AACCACACAAUGUAACACUCUAGG

dG = -75.6\text{ kcal/mol}
Output of cis_graph ()
by E. Stewart and M. Zucker

csn-smR33-5p
ACACUUGAGGAACAAACAACUGCA

d6 = -35.266
\textit{Output of \texttt{air_graph} (...) by E. Stewart and M. Zuker}

csn-smR33-3p
UUUUGGAGUCUGUGAAGAAAAG

d_6 = -35_{\text{267}}
Output of six_graph(...)
by E. Stewart and M. Zuker

csn-smR34-5p
CAAAUGGCUCAAAACUGUCAA

d6 = -33*270
Output of arc_graph()
by E. Stewart and M. Zuker

csn-smR34-3p
UUUUGACAUUUUCGGCCAUUUGA

d6 = -332.71
Output of cir_graph ()
by E. Stewart and M. Zuker

csn-smR35
UUUGGUAGAAAAUUGGGACC

d6 = -62.4 \times 10^{273}
Output of sirc_graph ()
by E. Stewart and M. Zuker

\[d_6 = -34.8 \times 275 \]

csn-smR36
UUAAUAUGAUUUUUUGGUAGGC
Output of sier_graph()
by E. Stewart and M. Zolner

csn-smR37
AUUGUGUGGUUGAGAUUAAUGAC

d6 = -72.7\times10^{-6}
csm-smR38-3p
GGCUAUUGGCGCCGCCCCAGAC

Output of air_graph()
by E. Stewart and M. Zuker

d6 = -31.1*279
Output of air_graph
by E. Stewart and H. Zolner

csn-smR39-5p
CGAGGUUAGCUAAAUUACAGA

d6 = -51.9\times 282
Output of air_graph()
by E. Stewart and H. Zokar

csn-smR39-3p
UAUGAAAUAUAAACUUCAGGGGGC

d6 = -51.97283
Output of air_graph()
by E. Stewart and M. Zuker

d6 = -57.8284

csn-smR40-5p
UU CUAGAAGUCCUAUUAGAAGAGC
Output of cir_graph ()
by E. Stewart and M. Zuker

csn-smR40-3p
CGGGACGAUAUUUUAGAAAGG
Output of air_graph() by E. Stewart and M. Zuker

csn-smR41-5p
CGGAUAUCGAUAGUUAUGUGA

$d6 = -62.1^{286}$
Output of six_graph ()
by E. Stewart and H. Zuker

d6 = -62.1287

csn-smR41-3p
UCGGAUAUCGAUAGCUAUAGAUC
Output of air_graph ()
by E. Stewart and M. Zuker

\[d_6 = -7.288 \]

\text{csn-smR42}

\text{ACACCGUCAAUGUGAAUGUUAUCAUA}
Output of air_graph ()
by E. Stewart and M. Zuker

csn-smR43-5p
CGAGGUUUGGCUAUUACAGAUA
Output of sir_graph ()
by E. Stewart and M. Zuker

csn-smR43-3p
UAUGAAAUAUAAACCUCAGGGGC

d6 = -43.8 tbsp
Output of air_graph ()
by E. Stewart and M. Zokar

csn-smR44-5p
AUGACUCGAUAGUCUCAAAAACGAC

d6 = -72.5°±292
csn-smR44-3p

AACAUCGAGCUAUUCGGACCACAC

d6 = -72.5

Output of sir_graph ()
by E. Stewart and M. Zuker
Output of sic-graph ()
by E. Stewart and M. Zuker

csn-smR45-5p
AAAAAUGAUUGGUAGCUCGAAUUU

dG = -66.5 x 294
Output of air_graph ()
by E. Stewart and M. Zolner

\[\text{\textit{dG}} = -66.5 \text{K} \]

csn-smR45-3p
UGAGACAUUCGAGCCAUUUUGAGCC
Output of air_graph ()
by E. Stewart and M. Zolner

csn-smR46
GGAGUCUGGUAGCUCAAC

d6 = -28.6296
Output of air_graph()
by E. Stewart and M. Zuker

g6 = -42.47298

csn-smRNA-5p
CGGAUGGAGAAGGCACAACC
\[d_6 = -42.4 \pm 299 \]

csn-smR47-3p
UAGGAUACAUUUUAAGAAA
Output of.air_graph()
by E. Stewart and M. Zuker

csn-smR49a-5p
AGAAACAUAAUUAUGAAUCGGACA

dG = -66.6 ± 3.2
csn-smR49a-3p
UGUGUCUGCUGUCUAUGAUAGAUAG

dG = \ -66.6^{\pm}303
CCUACCUACUACCACCU

csn-smR0-5p

d6 = -84.54304
output of air_graph ()
by E. Stewart and M. Zolkar

csn-smR50-3p
ACAAUGAUGCCUAUAUAUAGAAGAG

$\delta = -94.57305$
Output of air_graph ()
by E. Stewart and M. Zuker

csn-smR49b-3p
UGUGUCUGGUUCUAUGAUAUGUU

d6 = -66.67307
Output of sir_graph ()
by E. Stewart and M. Zuker

csn-smR52-3p
AAGAAAUUGAGAAACGCUCGUGCA

d6 = -29.9*309
Output of air_graph()
by E. Stewart and M. Zoller

csn-smR53-5p
UGAGUGUGGGACUGAUACACGGGUC

d6 = -72.7±31.0
Output of air_graph ()
by E. Stewart and M. Zuker

d6 = -72.7 \times 311

\text{csn-smR53-3p}
\text{AAAUUUAUAUAAAUUUUUGGAACC}
Output of air_graph ()
by E. Stewart and M. Zuker

d6 = -715315

csn-smR55-3p
UUUGUUCCAAUUCGGGCGACC
$d_6 = -53.6 \pm 3.9$

csn-smR56
ACCGGCUUGGCAGAAUCAGC
Output of air_graph ()
by E. Steward and M. Zukan

csn-smR57-5p
UUUGGUUCCGAUCACUCAUGAU

dG = -98.4*320
Output of cir_graph()
by E. Stewart and M. Zuker

d6 = -98.4*321

csn-smR57-3p
UAUGUGGCCGAUCAUGAGUGG
Output of air_graph ().
by E. Stewart and M. Zucker

csn-smR58-5p
ACUAAGCUAUAGCCAGAGAAC
Output of sir_graph()
by E. Stewart and M. Zuker

csn-smR58-3p
CUAAGUUCAACUAGGCCGGGCACA

d6 = -424323
Output of air_graph()
by E. Stewart and M. Zuker

csn-smR59-5p
UAGGGCAUAUGUUAAAGAGAGC

d6 = -53°C324
Output of air_graph()
by E. Stewart and M. Zuker

d_6 = -53.325

CSN-smR59-3p
CUUCUUAACAUUGUCCCUAAAG
Output of sir_graph ()
by E. Stewart and M. Zuker

csn-smR60-5p
AAAUUCUGUGACUCAAAUGACUCA

d6 = -37.1x326
Output of arc_graph ()
by E. Stewart and M. Zuker

csn-smR60-3p
UUUGACAUUUUCGGACCAUU

\[d_6 = -37.1 \times 327 \]
csn-smR61-5p
AAUUUCGUUCACCGGUCGUCCGG

d6 = -63.328
\[dG = -39.4 \times 100 \]

csn-smR62-5p

AAGUUACAGAAUCGGACAUAGAAU
Output of air_graph() by E. Stewart and M. Zuker

csn-smR62-3p
ACUUUGUAAAAUCUUUAUCAUCCGC

d6 = -39.4*331
csn-smR63-5p
UGCAAAACAGAAUAUUCGGGAA

d6 = -34.332
Output of cir_graph
by E. Stewart and M. Zuker

csn-smR63-3p
UAUGUAUACGGUAUUUGGUUC

d6 = -347333
Output of air_graph ()
by E. Stewart and M. Zuker

csn-smR64-5p
UUUGAAAGAUAAAUGAAAAAGU

d6 = -49.7±334
Output of air_graph ()
by E. Stewart and M. Zuker

csn-smR64-3p
AAUCCUCACCAAAUCCUUAAGCC

d6 = -49.7*335
Output of vis_graph ()
by E. Stewart and M. Zuker

csn-smR65
UACGGGUUCAUAGAUGAAGAA

d6 = -46.1*337
Output of sir_graph ()
by E. Stewart and M. Zolner

csn-smR66-5p
AAGUUGGGUUUGGGCUAAAUUGC

d6 = -34.67338
\(\text{dG} = -34.61339 \)

csn-smR66-3p

AACGGACAAAAGAAAGUUGGGAGC
Output of cir_graph ...
by E. Stewart and M. Zukan

csn-smR68-5p
UUUGGAGAGGGAUUUGGAAAG

d6 = -55.3\pm 342
Output of an_graph ()
by E. Stewart and M. Zuker

d6 = -55.3\text{43}

csn-smR68-3p
AAAUUCUUGAACAAUGCAGCCU
Output of an_graph ()
by E. Stewart and M. Zukan

csn-smR69-5p
AGAAUCAGACAUAAACUCCUUU

dG = -66.5\pm344
Output of sec_graph ()
by E. Stewart and M. Zuker

d6 = -66.5\times345

csn-smR69-3p
GAUUCUGUGAUCGGUUCUGUGUU
Output of sir_graph ()
by E. Stewart and M. Zuker

csn-smR70-5p
UUUGGGAGAACUUGGUAAAAAGCC

dG = -34.81347
Output of sir_graph (~)
by E. Stewart and M. Zuker

d6 = -32.67348

csn-smR70-3p
AAAAGUAAGGGAGCAAUAC
Output of cir_graph()
by E. Stewart and M. Zuker

csn-smR71-5p
AAUCAUUGGAAUAUAUGAGAAUCU

d6 = -77.2 \times 350
Output of

\[
d_6 = -77.2 * 351
\]

csn-smR71-3p
AAUGGUUGUGAGUGAUUUGAGACA
Output of cir_graph()
by E. Stewart and M. Zuker

csn-smR72-5p
UUGGUUCAUGAAUUUGGAAG

d6 = -59.7 \pm 352
Output of sir_graph()
by E. Stewart and M. Zolkar

csn-smR72-3p
UCUUUCCAAUUUCUUCCUCAAAUC

d6 = -59.71353
Output of sir_graph ()
by E. Stewart and M. Zuker

csn-smR73-3p
GCUCGGUCUGGUCGAGGAC

d6 = -61.7\times 355
Output of air_graph (...) by E. Stewart and M. Zuckar

csn-smR74-5p
CAAAACUGGACACAACCCUCUC

\[d6 = -45.7 \pm 356 \]
Output of sir_graph ()
by E. Stewart and M. Zuker

csn-smR74-3p
ACCUCAUUGAGAGGAUUGUGUCC

dG = -45.7 + 357
Output of mir_graph()
by E. Stewart and M. Zuker

d_6 = -78.3 x 360

csn-smR75
AGUUGUGAUUGGUAAAAAGGGUUGG
Output of csn_graph() by E. Stewart and M. Zuker

csn-smR76-5p
AUAAAUCCCAACCCUUUUUUACCAAU

d6 = -46.4*362
Output of {\text{air_graph}(\,)}
by S. Stewart and M. Zuker

csn-smR76-3p
AAUUGUGAUUGGUGAAAGAGUGA

\[d_6 = -46.4^{\pm}363 \]
csh-smR7-5p
CUUGAUUGGAGCU

d_6 = -60.4 \times 364
Output of sir_graph ()
by E. Stewart and M. Zuker

d6 = -60.4 \pm 365

csn-smR77-3p
CGCAAAUCCUCCUCCAAAAUCC
Output of sir_graph ()
by E. Stewart and M. Zuker

csn-smR78
CGUGAGGGUUUGAUUUUGA

d6 = -39.37366
csn-smR79-5p

AAAAGUUUCUAUGCAUCUGUCCCA
Output of sir_graph ()
by E. Stewart and M. Zukan

d6 = -54.97369

csn-smR79-3p
UUGUGAGUGAUUUGGAACAGA
Output of `air_graph()`
by E. Stewart and M. Zuker

csn-smR80
AAUAAAAAUUAUGUAAGACUCGU

d6 = \(-90.41371\)
Output of csn

by E. Stewart and M. Zolner

csn-smR81
UGAUUAUGAGUGAUUUGGGAC

d6 = -77.31373
Output of sir_graph().
by E. Stewart and M. Zuker

csn-smR82
UUCGUUUCACCAGCCAGUUGGAAC

dG = -62.61374
Output of sir_graph()
by E. Stewart and M. Zukan

csn-smR84-5p
AGCGCAAGUUGACCCGGACACCCC

g = -62.6\text{ kcal/mol}
Output of air_graph()
by E. Stewart and M. Zolak

csn-smR84-3p
AGGCCAGCUUGCGCACAUCUCGAC
Figure S1. Mature and precursor sequences and the predicted stem-loop structures of newly identified miRNAs from *Camellia sinensis*.