Appendix E
R code for the classical & robust two-stage approaches

NOTE:
before running the code below one must first run the code that generates the toydata
which is in the supplementary AppendixD_Rcode.pdf file

loading the data
load("toydata.Rdata")

loading the libraries
library(lme4) # for classical LMM
library(robustlmm) # for robust LMM
library(psych) # to being able of using the tr() function
library(asreml) # for the classical LMM with kinship matrix
if tr() does not work load library(matrixcalc) and use matrix.trace() function

CLASSICAL first-stage fit below is commented;
uncomment when you wish to run it, in which case you should comment the robust fit

fitting the first-stage classical model
fit< lmer(yield ~ -1 + geno + (1|rep)+(1|rep:block), toydata)
getting the lsmeans and var-covar structure
R <- summary(fit)$vcov
mu <- summary(fit)$coefficients[,1]
computing the Smith's and Standard weights
w <-(1/diag(R)) #Standard weights
wsmith<-diag(solve(R)) #Smith's weights
rm(R)
keeping also the estimated random effects variances
STDs<-matrix(0,3,1)
STDs[1,1]<- attr(VarCorr(fit)$'rep:block', "stddev")
STDs[2,1]<- attr(VarCorr(fit)$'rep', "stddev")
STDs[3,1]<- attr(VarCorr(fit),"sc")
colnames(STDs)<-"std"
rownames(STDs)<-c("REP:BLOCK","REP","Residual")
stage1.vars<-STDs^2
rm(STDs)

fitting the first-stage robust model
fit<- rlmer(yield ~ -1 + geno + (1|rep)+(1|rep:block), toydata,
 rho.sigma.e = psi2propII(smoothPsi, k = 2.28))
getting the lsmeans and var-covar structure
R <- summary(fit)$vcov
mu <- summary(fit)$coefficients[,1]
getting the robust weights
do not confuse these with the Smith's and Standard weights
Note that if your data has missing values of yield, no robust weights are estimated
and therefore the process of getting the robust weights for the 2nd-stage
will not be as straightforward as it is in this case
rob.weights<-getME(fit,name="w_e")
the robust weights need not the same for genos in rep1 and rep2
but we want only 1 robust weight per-genotype
thus we will choose the min between the 2 robust weights from the 2 replicates
the next computations need to be adapted for each dataset because the order of
the weights matches the one of the dataset as also do the order of the residuals
n <- length(mu)
aux <- vector()
for (k in seq(1, (n * 2 - 1), by = 2)) {
aux <- c(aux, min(rob.weights[k], rob.weights[k + 1]))
}
rob.weights <- aux
rm(aux, k, n)

computing the Smith's and Standard weights, which incorporate the robust weights
w <- (1/diag(R)) * rob.weights # Standard weights
wsmith <- diag(solve(R)) * rob.weights # Smith's weights
rm(rob.weights, R)

keeping also the estimated random effects variances
STDs <- matrix(0, 3, 1)
STDs[1, 1] <- attr(VarCorr(fit)$'rep:block', "stddev")
STDs[2, 1] <- attr(VarCorr(fit)$'rep', "stddev")
STDs[3, 1] <- attr(VarCorr(fit), "sc")
colnames(STDs) <- "std"
rownames(STDs) <- c("REP:BLOCK", "REP", "Residual")
stage1.vars <- STDs^2
rm(STDs)

fitting the second-stage model -- classical approach used
try out G=I to see how H2.M5 and H2.Oakey match
toyG <- diag(dim(toyG)[1])
colnames(toyG) <- names(mu)
rownames(toyG) <- names(mu)

preparing the data
plantid <- names(mu)
colnames(toyG) <- names(mu)
rownames(toyG) <- names(mu)
inv.toyG <- solve(toyG)
ourdata <- data.frame(plantid = plantid,
mu = mu,
wsmith = wsmith,
w = w)

fitting the model
one can change the Smith's weights (wsmith) for the Standard weights (w) below
fit.cls <- asreml(data = ourdata,
fixed = mu ~ 1,
random = giv(plantid),
rcov = units, na.method.Y = "include",
weights = wsmith,
family = asreml.gaussian(dispersion = 1.0),
control = asreml.control(workspace = 16e7, ginverse = list(plantid = inv.toyG),
maxiter = 1000))

computing the eBLUPs, estimated genetic variance and C22 matrix
gBLUP <- fit.cls$coefficients$random
s.var <- summary(fit.cls)$varcomp['giv(plantid).giv', 'component']
C22 <- predict(fit.cls, classify = "giv(plantid)", only = "giv(plantid)", vcov = T)$pred$vcov
removing stuff from memory
rm(fit, fit.cls, ourdata, plantid)
rm(inv.toyG)

third-stage -- heritability and predictive accuracy estimation
preparing the matrices and auxiliary variables as in the paper notation
G <- toyG
n <- dim(G)[1]
G.tilde <- G * s.var
R.tilde <- solve(diag(n) * (wsmith))
rm(toyG)

computing heritability and predictive accuracy via METHOD 5
V <- G.tilde + R.tilde
P <- (1/(n-1)) * (diag(n) - matrix(1, n, n)/n)
one <- as.matrix(rep(1, n))
Q <- diag(n) - one %*% solve(t(one) %*% solve(V) %*% one) %*% t(one) %*% solve(V)
C <- G.tilde %*% solve(V) %*% Q
PA.est.m5 <- tr(P %*% C %*% G.tilde) / sqrt(tr(P %*% G.tilde) * tr(t(C) %*% P %*% C %*% V))
H2.est.m5 <- PA.est.m5^2
rm(V, P, Q, C, one)

computing reliability and predictive accuracy via METHOD 7
v1 <- G.tilde
v2 <- G.tilde - C22
rho2 <- vector()
for (j in 1:n) {rho2[j] <- (v2[j, j]^2 / (v1[j, j] * v2[j, j]))}
rm(j, v1, v2)

RL.est.m7 <- mean(rho2)
PA.est.m7 <- mean(sapply(rho2, sqrt))
rm(rho2)

computing heritability via OAKEY’s METHOD
D <- diag(n) - solve(G.tilde) %*% C22
eival <- eigen(D)$values
s <- length(eival[eival < 0.0001])

H2.OAKEY <- tr(D) / (n - s)
rm(D, eival, s, G.tilde, R.tilde)
rm(n, w, wsmith)
rm(G, C22)

printing out the results
cbind(t(stage1.vars), s.var)
cbind(H2.est.m5, H2.OAKEY, PA.est.m5, PA.est.m7)