R implementation

Sleiman Bassim
September 11, 2017

1 Loaded functions:

```r
#source("/media/Data/Dropbox/humanR/01funcs.R")
rm(list=ls())
```

2 Load packages.

```r
pkgs <- c('gdata', 'lattice', 'latticeExtra',
          'ggplot2', 'dplyr', 'vegan', 'tidyr',
          'ggbiplot')
lapply(pkgs, require, character.only = TRUE)
```

3 Show the length distribution of reads

Load gff3 sequence length data for mapped QPX libraries and references. GFF3 files contain
the sequence length of each contig. These contigs belong to Steve Roberts genome v015 and
017 and transcriptome v21 of QPX.

```r
genome <- read.table("./data/QPX_Genome_v017.gff3")
head(genome)
```

```r
V1 V2 V3 V4 V5 V6 V7 V8
1 QPX_v017_contig_1007 . CDS 1 15433 . . .
2 QPX_v017_contig_1043 . CDS 1 11565 . . .
3 QPX_v017_contig_1050 . CDS 1 12908 . . .
4 QPX_v017_contig_1087 . CDS 1 12852 . . .
5 QPX_v017_contig_1094 . CDS 1 10365 . . .
6 QPX_v017_contig_1128 . CDS 1 10580 . . .
```

```r
V9
1 ID=QPX_v017_contig_1007;Name=QPX_v017_contig_1007
2 ID=QPX_v017_contig_1043;Name=QPX_v017_contig_1043
3 ID=QPX_v017_contig_1050;Name=QPX_v017_contig_1050
4 ID=QPX_v017_contig_1087;Name=QPX_v017_contig_1087
5 ID=QPX_v017_contig_1094;Name=QPX_v017_contig_1094
6 ID=QPX_v017_contig_1128;Name=QPX_v017_contig_1128
```

```r
transcriptome <- read.table("./data/QPX_transcriptome_v2orf.gff3")
```

4 GFF3 counts of MME transcriptomes MMETSP0098 and MMETSP00992, and the custom assembly with
MMETSP0098.

```r
mme98 <- read.table("./data/MMETSP0098.gff3")
mme99 <- read.table("./data/MMETSP0099_2.gff3")
mme98c <- read.table("./data/mme98cust.gff3")
genomv015 <- read.table("./data/QPX_v015.gff3")
```

5 The number of bases has been counted and published elsewhere by the authors who assembled
the references and sequenced the QPX libraries. Working through their data, we provide a
distribution of contig length for genome of Steve’s QPX. The purpose of this analysis is
to identify 2 things:

- Biases in contig length
- Comparison of parameters used for assembling the references
Distribution of Steve's QPX transcriptome.

```r
histogram(~ transcriptome$V5,
    type = 'count',
    col = 'red',
    data = transcriptome,
    nint = 75,
    xlab = 'Sequence length (bp)',
    ylab = 'Nb of contigs (11774 total)')
```

Distribution of length of MMETSP0098.

```r
histogram(~ mme98$V5,
    type = 'count',
    col = 'red',
    data = mme98,
    nint = 75,
    xlab = 'Sequence length (bp)',
    ylab = 'Nb of contigs (11774 total)')
```
Superpose the length of contigs in:

- Steve’s genome v017 (555 contigs)
- Steve’s transcriptome
- MMEtsp0098 transcriptome
- MMEtsp00992 transcriptome
- MMEtsp0098 custom transcriptome
- Steve’s Genome v015 (approx 22,000 contigs)

Merge datasets. Assign a new column to identify contigs.

grouping <- rbind(genome[, c(1,5)],
 transcriptome[, c(1, 5)],
 mme98[, c(1,5)],
 mme99[, c(1,5)],
 mme98c[, c(1,5)],
 genomv015[, c(1,5)])

Assign a new column to identify contigs.
grouping <- data.frame(grouping,
 y = c(rep("GenomeV17", nrow(genome)),
 rep("TrxV22", nrow(transcriptome)),
 rep("MME98", nrow(mme98)),
 rep("MME99", nrow(mme99)),
 rep("MME98custom", nrow(mme98c)),
 rep("(GenomeV15)", nrow(genomv015))))

Assign a higher resolution of this chart can be found in the Supplemental Information

dim(grouping)
[1] 100811 3

Plot reads length of the 6 assemblies including 2 QPX genomes.

custom.colors <- c(col1 = "#762a83",
 col2 = "#8a2b36",
 col3 = "#d9533d",
 col4 = "#f46d43",
 col5 = "#f46d43",
 col6 = "#f46d43")
2 Calling SNPs: Testing tools, parameters, and filters

SNPs were called either with samtools `mpileup` function and the highest significant were selected with bcftools or they have been called with GATK. Either way SNP calling was done on each QPX library separately. QPX libraries were:

- mmetsp0098 from New York
- mmetsp001433 from New York
- mmetsp00992 from Massachusetts
- mmetsp001002 from Virginia
- mmetsp0099 from Massachusetts
- mmetsp00100 from Virginia
2.1 Load data

Number of SNPs called with either packages were counted. Calls were done after read duplicates were removed with Picard.

```r
counts.SNP <- read.xls("./data/snp.counts.xlsx", sheet = 1)
glimpse(counts.SNP)
```

Histogram grouped by QPX library showing difference in SNPs counts relative to the reference used for mapping and the number of times GATK has been used to recalibrate calls. GATK (x1, x2, x3) represent one, two or three rounds of recalibration. The recalibration is done over a list of variants called under stringent parameters. SR: Steve Roberts genomes. Cust: custom assembly of mmetsp0098.

```r
xyplot( factor(reference) ~ as.matrix(counts) | factor(sample),
data = counts.SNP[-c(1:24), ],
groups = counts.SNP$reference,
pch = 21,
cex = 1,
type = c("p"),
lab = 'Number of SNPs called',
ylab = 'References & GATK filters')
```

```
\textsuperscript{1} Recalibration is done with GATK. The strategy is described in the pipeline on github here.
```

Plot the difference between QPX libraries and variant calling packages for the number of called SNPs. Combined: an assembly made of the combination of mmetsp0098, 992, 1002, 1433. SR: Steve Roberts genomes and transcriptomes (15 and 21 respectively). Samtools was done on trxSRv21rmdup.

```r
ggplot(counts.SNP,
    aes(x = factor(sample),
        y = counts,
        fill = factor(reference))) +
geom_bar(stat = "identity",
        position = "dodge") +
theme_bw() +
labs(title = "SNP counts between GATK and samtools with 6 references",
    x = "QPX Libraries",
    y = "SNP count")
```
Another plot for cluster analysis between references and SNPs called. I find this useful for a fast check of outliers and errors in importing data. In comG3 com=combined assembly, G=genome reference, 3= x3 recalibration rounds.

dat <- read.xls("./data/snp.counts.xlsx", sheet = 4)
custom.colors <- c(col1 = "#b2182b",
col2 = "#ef8a62",
col3 = "#fddbc7",
col4 = "#e0e0e0",
col5 = "#999999",
col6 = "#4d4d4d")
barplot((as.matrix(dat[, -c(1:5)])),
col = custom.colors,
horiz = TRUE,
las = 2,
beside = T,
legend.text = factor(dat[, 1]),
cex.names = .7,
xlab = "(log10) Number of SNPs called",
ylab = 'References')

Plotting only the GATK called SNPs.

counts.SNP <- counts.SNP[-c(1:24),]
Plot the difference between the number of SNPs called on the 6 QPX libraries using either the assembled or custom assembled mmetsp0098 reference. Also show the variation pattern with the number of reads used for calling SNPs. First, prepare SNP data.

```r
x1 <- counts.SNP[counts.SNP$reference %in% "mmetsp0098GATKx1", ]
x2 <- counts.SNP[counts.SNP$reference %in% "mmetsp0098CustGATKx1", ]
```

Next, add the number of reads per QPX library. This is the count of non duplicate reads that mapped to each of all the references used.

```r
ref.reads <- read.xls("./data/refreads.xlsx", sheet = 1)
head(ref.reads)
```

```
  sample  counts reference
  1      98  8591456 mmetsp0098GATKx1
  2      992  5875110 mmetsp0098GATKx1
  3      1002  7780584 mmetsp0098GATKx1
  4     1433  7001081 mmetsp0098GATKx1
  5       99  4835298 mmetsp0098GATKx1
  6     1000  4193326 mmetsp0098GATKx1
```

```
y <- ref.reads[1:12, ]
```

Plot difference.

```r
dat <- data.frame(rbind(x1, x2), reads = y$counts)
```
Plot number of all mapped reads for each QPX library and for all 4 references.

```r
ggplot(dat, 
    aes(x = factor(sample),
        y = counts,
        fill = factor(reference))) +
    geom_bar(stat = "identity",
              position = "dodge") +
    theme_bw() +
    labs(x = "QPX Libraries",
         y = "SNP counts")

ggplot(dat, 
    aes(x = factor(sample),
        y = reads,
        group = factor(reference))) +
    geom_line(size = .2)+
    geom_point(data = dat, 
        aes(x = factor(sample),
             y = reads,
             colour = factor(reference),
             size = counts)) +
    theme_bw() +
    labs(x = "QPX Libraries",
         y = "Mapped reads counts")
```

```r
Plot number of all mapped reads for each QPX library and for all 4 references.

```r
ggplot(ref.reads,
 aes(x = factor(sample),
 y = counts,
 group = factor(reference))) +
 geom_line(size = .2) +
 geom_point(aes(shape = factor(reference))) +
 theme_bw() +
 labs(x = "QPX libraries",
 y = "Read counts")
```
Difference in SNPs called between the already assembled and the custom assembled mmetsp0098 reference.

The custom assembled mmetsp0098 was done with trinity

```r
dat <- read.xls("./data/snp.counts.xlsx", sheet = 2)
ggplot(dat,
 aes(x = factor(sample),
 y = counts,
 fill = factor(reference))) +
geom_bar(stat = "identity",
 position = "dodge") +
theme_bw() +
 labs(x = "QPX libraries",
 y = "SNP counts")
```

Another way to show difference between GATK recalibration protocols and the way this strategy decreases the number of SNPs called by readjusting of nucleotide probabilities for each read. The plot shows also the difference in SNP called between mmetsp0098 custom (the first 3 bars) and original (the last 3 bars) assemblies.

```r
dat <- read.xls("./data/snp.counts.xlsx", sheet = 3)
```
3 Final filtering

GATK hard filtering removes SNPs with low quality or confidence. This is calculated relatively to the depth of coverage. Using 3 different thresholds for QD (qualtiy of depth) we get the number of SNPs that pass the filters.

\[
QD = \frac{\text{Confidence}}{\text{Depth Coverage}} 
\]

\[
\text{Depth Of Coverage} = \frac{\text{Nb Of Reads} \times \text{Read Length}}{\text{Assembly Size}} 
\]

3.1 Working with the combined assembly and genome v15

Difference in called SNPs between QPX libraries mapped to 2 different references, the combined assembly (represented by lower bar labels) and the genome v15 of S. Roberts (represented by higher bar labels). A higher resolution bar can be found in Supplemental Information.

```r
dat <- read.xls("./data/hard.snps.xlsx", sheet = 1)
```

\[ ^{\text{Genome v15 S. Roberts is used in the remaining tests}} \]
Number of SNPs per strain at QD = 5. SNPs called against SR genome v15. The number of reads (approx 100 nt in size) per library has been counted and plotted previously, the data is in refreads.xlsx.

dat <- read.xls("./data/hard.snps.xlsx", sheet = 1)
dat <- dat[7:10, 1:2]
dat$Treads <- ref.reads[c(19, 22, 20, 21), 2]
dat$norm <- with(dat, (snps/Treads)*1000)

ggplot(dat, 
aes(x = as.factor(sample), 
y = norm)) + 
geom_bar(stat = "identity") + 
geom_text(aes(x = as.factor(sample), 
y = norm, 
ymax = norm, 
label = round(norm, digits = 2), 
color = "white", 
vjust = 2, 
size = 3)) + 
labs(x = "QPX libraries", 
y = "Normalized count of nb of SNPs/nb of reads")
We can also do the same thing with indels.

```r
dat <- read.xls("./data/hard.snps.xlsx", sheet = 1)
ggplot(dat, aes(x = factor(sample), y = indels, fill = factor(qd))) + geom_bar(stat = "identity", position = "dodge") + theme_bw() + geom_text(aes(x = factor(sample), y = indels, ymax = indels, label = indels, size = 2, hjust = 1), position = position_dodge(width=1)) + coord_flip() + scale_fill_hue(c = 40, l = 60) + labs(x = "Count of indels ref:combined (lower), ref:genome15 (higher)", y = "QPX libraries")
```

The combined assembly is already published. It is added here with the other references because it is heavily annotated and their contigs are extensively mapped. Load in new mapped data to the combined reference:
combined <- read.xls("./data/snp.counts.xlsx", sheet = 1)
glimpse(combined)

Observations: 114
Variables: 3
$ sample   (int) 98, 992, 1002, 1433, 99, 100, 98, 992, 1002, 14...
$ counts   (int) 351790, 395060, 427790, 389188, 309813, 425947,...
$ reference (fctr) trxSRv21, trxSRv21, trxSRv21, trxSRv21, trxSRv...

Difference in SNPs called between the genome v15 of S. Roberts and the official combined assembly. First extract relative rows.

dev <- paste("genomSRv15GATKx", seq(1,3,1), sep = "")
ser <- paste("combinedGATKx", seq(1,3,1), sep = ")
difference <- rbind(combined[combined$reference %in% dev, ],
                    combined[combined$reference %in% ser, ])

d.ref <- ref.reads[c(19:30), ]

Plot difference.

ggplot(difference,
       aes(x = factor(sample),
           y = counts,
           fill = factor(reference))) +
  geom_bar(stat = "identity",
           position = "dodge") +
  theme_bw()

A higher resolution of this plot can be found in supplemental Information

ggplot(d.ref,
       aes(x = factor(sample),
           y = counts,
           group = factor(reference))) +
  geom_line(size = .2)+
  geom_point(data = d.ref,
             aes(x = factor(sample),
                  y = counts,
                  colour = factor(reference),
                  size = counts)) +
  theme_bw()

4 Descriptive stats of all processed libraries

This following section shows the mean length of all sequences assembled from each library, the number of base pairs per library, the identified protein features from these sequences, and the number of functional enzymes identified by mapping to public libraries. It is to note the number of predicted and identified rRNA features in each of these libraries is significantly low. Regress different variables on each others for visualization purposes.
The plot shows the difference between QPX libraries according to the number of base pair (bp x 1000, the identified protein features estimated from assembled sequences (feature), the functional sequences estimated from the contigs (function), the mean length of contigs in each library, and the number of contigs (sequence) assembled from raw reads after trimming and duplicate removal (all basic quality controls).

Warning: failed to assign NativeSymbolInfo for env since env is already defined in the 'lazyeval' namespace

The number of base pair must be multiplied by 1000 in this chart
rstats <- stats[complete.cases(stats),]
rstats$bp <- rstats$bp/1000
#rstats <- rename(rstats, bp1000 = bp)
rstats <- gather(rstats, "feature", "count", c(2:4, 7:8))
ggplot(rstats, 
  aes(x = libraries, 
      y = count, 
      group = factor(feature)) +
  geom_line(size = .2) +
  geom_point(aes(shape = factor(feature),
                size = 1.5)) +
  theme_bw() +
  geom_text(aes(x = libraries,
                y = count,
                ymax = count,
                label = count,
                size = 1.5,
                hjust = ifelse(sign(count)>1, .5, 0)),
            position = position_dodge(width = 1)) +
  labs(x = "QPX libraries",
       y = "Counts")

Principal component analysis and diagnostics.

stats <- read.xls("./data/libraries.xlsx", sheet = 1)
rownames(stats) <- stats$libraries
rstats <- stats[complete.cases(stats), -1]
rstats <- decostand(rstats, method = "range")
p = princomp(~bp + mlength + sequence + rna
              , data= rstats)
summary(p)

Importance of components:

                      Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation   0.459 0.382 0.1401 0.017928
Proportion of Variance 0.560 0.387 0.0522 0.000855
Cumulative Proportion 0.560 0.947 0.9991 1.000000

biplot(p)
Finally a summary of all sequence data.

```
stats[, -1]

 bp sequence mlength sd mgc feature functional rna
m98 24868199 15489 1605 1765 45 5536 3598 21
m98cust 45010375 39946 1126 1505 42 5885 3704 60
m992 14370962 11767 1221 921 46 3632 2476 7
m1433 21934277 13557 1617 1677 46 5038 3285 29
m1002 21633746 14651 1476 1133 45 4476 2578 9
m99 18237292 28498 639 504 49 5878 3807 229
m100 17540863 12579 1394 1042 46 4249 2885 121
gSR15 34662469 21280 1628 2907 44 4107 2578 9
combined 27842190 16662 1670 1908 45 5592 3663 34
```

5 Applied annotations, subsystem predictions, and taxonomic distribution

Like the title implies, identified and predicted annotations and protein features are mapped to public sequence libraries.

Reshape data, transform columns into rows.

```
predicted <- read.xls("./data/libraries.xlsx", sheet = 3)
predicted <- gather(predicted, "ko", "count", 3:8, na.rm = TRUE)
summary(predicted)
```

```
lib chart ko count
combined: 6 ko:54 Length:54 Min. : 31
 gSR15 Class :character 1st Qu.:132
 m100 Mode :character Median :272
 m1002 Mean : 361
 m1433 3rd Qu.: 589
 m98 Max. :1471
(Other) :18
```

Plot difference in identified protein features between libraries.

```
ggplot(predicted,
```
In this next snippet subsystems are discussed. Functional coupling and chromosomal clusters are shown for clustering-based subsystems among other subsystems.

```
predicted <- read.xls("./data/libraries.xlsx", sheet = 4)
predicted <- gather(predicted, "subsystems", "count", 3:8, na.rm= TRUE)
ggplot(predicted,
 aes(x = lib,
 y = count,
 group = factor(subsystems))) +
 geom_line(size = .2) +
 geom_point(aes(shape = factor(subsystems),
 size = 1.5)) +
 theme_bw() +
 geom_text(aes(x = lib,
 y = count,
 ymax = count,
 label = count,
 size = 1.5,
 hjust = ifelse(sign(count)>1, .5, 0)),
 position = position_dodge(width = 1)) +
 labs(x = "QPX libraries",
 y = "Counts")
```
Finally, a taxonomic classification on sequence similarities gives insights on sequence relatedness or sample contamination. Five classes were selected, bacteria, fungi, algae, parasite, and bivalvia.

```r
predicted <- read.xls("./data/libraries.xlsx", sheet = 5)
predicted <- gather(predicted, "class", "count", c(3,5:9), na.rm = TRUE)
ggplot(predicted,
 aes(x = lib,
 y = count,
 group = factor(class))) +
 geom_line(size = .2) +
 geom_point(aes(shape = factor(class),
 size = 1.5)) +
 theme_bw() +
 geom_text(aes(x = lib,
 y = count,
 ymax = count,
 label = count,
 size = 1.5,
 hjust = ifelse(sign(count)>1, .5, 0)),
 position = position_dodge(width = 1)) +
 labs(x = "QPX libraries",
 y = "Counts")
```

### 6 Shared SNPs between libraries

Shared SNPs between libraries mapped to SR genome v15. The first column shows the count of shared SNPs. The next 3 columns shows the name of the QPX library (mmetsp00 98, 992, 992cust). A higher resolution summary of the 4 last plots can be found in Supplemental Information.
1002, 1433). The libraries situated on a same row share the same SNPs.

```r
shared.snps <- read.table("./data/shared.snps.txt", fill = TRUE)
```

```
X132 X1433.0.9.. X992.1.9..
200 98(1.2%) 992(2.9%)
314 1002(3.2%) 1433(2.1%)
328 1002(3.4%) 1433(2.1%) 992(4.7%)
587 1002(6.0%) 98(3.5%) 992(8.4%)
589 1433(3.9%) 98(3.5%) 992(8.5%)
632 1002(6.5%) 98(3.8%)
655 992(9.4%)
825 1002(8.5%) 992(11.8%)
1679 1002(17.3%)
1702 1002(17.5%) 1433(11.1%) 98(10.2%)
2577 1433(16.9%)
3394 98(20.3%)
3649 1002(37.6%) 1433(23.9%) 98(21.8%)
5976 1433(39.1%) 98(35.7%)
```

Shared indels between libraries mapped to SR genome v15.

```r
shared.indels <- read.table("./data/shared.indels.txt", fill = TRUE)
```

```
X8 X98.0.7.. X992.2.0..
12 1433(1.1%) 992(3.1%)
14 1002(2.7%) 1433(1.3%) 992(3.6%)
15 1002(2.9%) 1433(1.4%)
31 1002(5.9%) 98(2.7%)
40 1433(3.7%) 98(3.4%) 992(10.2%)
41 1002(7.8%) 98(3.5%) 992(10.5%)
62 1002(11.8%) 992(15.9%)
68 992(17.4%)
78 1002(14.8%) 1433(7.2%) 98(6.7%)
139 1002(26.4%)
146 1002(27.8%) 1433(13.5%) 98(12.5%)
992(37.3%)
267 1433(24.7%)
316 98(27.1%)
507 1433(47.0%) 98(43.4%)
```

6.1 Component analysis and sequence closeness from MG-RAST annotation

Import annotated data.

```r
closeness <- read.csv("./data/pca.csv", sep = "\t")
```
summary(closeness)

metagenome
mmetsp1002:1141
mmetsp1433:1278
mmetsp98 :1279
mmetsp992 :1088
QPX_v15 :1030

level.1
Carbohydrates : 848
Amino Acids and Derivatives : 785
Protein Metabolism : 769
Clustering-based subsystems : 559
Miscellaneous : 552
Cofactors, Vitamins, Prosthetic Groups, Pigments: 462
(Other) :1841

level.2
0 : 750
Plant-Prokaryote DOE project : 506
Protein biosynthesis : 499
RNA processing and modification: 346
Central carbohydrate metabolism: 326
Folate and pterines : 278
(Other) :3111

level.3
YgfZ : 120
Ribosome LSU eukaryotic and archaeal: 101
Proteasome eukaryotic : 91
Ribosome SSU eukaryotic and archaeal: 91
Serine-glyoxylate cycle : 88
tRNA modification Bacteria : 76
(Other) :5249

function.
GTP cyclohydrolase I (EC 3.5.4.16) type 1 : 70
Acetyl-CoA acetyltransferase (EC 2.3.1.9) : 55
Serine hydroxymethyltransferase (EC 2.1.2.1) : 50
Cysteine desulfurase (EC 2.8.1.7) : 48
3-ketoacyl-CoA thiolase (EC 2.3.1.16) : 40
Branched-chain amino acid aminotransferase (EC 2.6.1.42): 40
(Other) :5513

abundance avg.eValue avg..ident avg.align.len
1 :3943 Min. : -269 Min. : -183.0 Min. : 24
2 :1140 1st Qu.: -57 1st Qu.: 63.2 1st Qu.: 61
3 : 280 Median : -29 Median : 66.2 Median : 92
4 : 155 Mean : -41 Mean : 65.7 Mean :118
5 : 69 3rd Qu.: -15 3rd Qu.: 70.2 3rd Qu.:156
6 : 68 Max. : 3 Max. :95.6 Max. :544
(Other): 161

X..hits X
Min. : 1 Min. :1
1st Qu.: 1 1st Qu.:1
Median : 1 Median :1
Mean : 4 Mean :1
3rd Qu.: 2 3rd Qu.:2
Max. :457 Max. :3
NA's :5727
closeness <- closeness[, c(1, 7:10)]

Principal component analysis on 5 libraries, 4 strains and the genome (v15), using an identity score for annotating a sequence and an alignment length score for similarities with estimated functional features, an e-value score for estimated functional similarities, and the number of hits, ie., the number of times a function is identified in a library.
rownames(closeness) <- paste(closeness[, 1], 1:nrow(closeness), sep = ".")
x = closeness[, -1]
head(x)

avg.eValue avg...ident avg.align.len X..hits
mmetsp1433.1 -57 74.7 142 1
QPX_v15.2 -57 74.7 142 1
mmetsp98.3 -57 74.7 142 1
mmetsp1002.4 -57 74.7 142 1
mmetsp1433.5 -60 64.7 173 1
QPX_v15.6 -60 64.7 173 1

## standardization (columns)
results <- decostand(x, method = "range")
head(results)

avg.eValue avg...ident avg.align.len X..hits
mmetsp1433.1 0.779 0.925 0.227 0
QPX_v15.2 0.779 0.925 0.227 0
mmetsp98.3 0.779 0.925 0.227 0
mmetsp1002.4 0.779 0.925 0.227 0
mmetsp1433.5 0.768 0.889 0.287 0
QPX_v15.6 0.768 0.889 0.287 0

p = princomp(~ avg...ident + avg.align.len
   , data= results)
summary(p)

Importance of components:

Comp.1 Comp.2
Standard deviation 0.156 0.0605
Proportion of Variance 0.869 0.1309
Cumulative Proportion 0.869 1.0000

#plot(p, type = "l")
#biplot(p, cex = .4)

Clustering and visualization of all sequences without applying any filters.

ggbiplot(p, obs.scale = 1,
   var.scale = 1,
   groups = closeness$metagenome,
   ellipse = TRUE,
   circle = FALSE) +
geom_point(aes(size = closeness$X..hits)) +
theme_bw() +
  theme(legend.direction = 'horizontal',
       legend.position = 'top')

21
Build a custom PCA function for repetitive iterations.

```r
customBiplot <- function(data, method){
 x=data[, -1]
 results <- decostand(x, method = method)
 p = princomp(~ results[, 2] + results[, 3] , data= results)
 ggbiplot(p, obs.scale = 1, var.scale = 1, groups = data$metagenome, ellipse = TRUE, circle = FALSE) + theme_bw() + theme(legend.direction = 'horizontal', legend.position = 'top')
}
```

Filter sequences depending on their alignment length and the abundance of an identified function (therotically a protein).

```r
closenessX <- filter(closeness, avg.align.len < 50, X..hits > 2)
dim(closenessX)[1]
[1] 57
customBiplot(closenessX, method = "range")
```

Filter by selecting higher alignment scores only.
closenessX <- filter(closeness, avg.align.len < 60, X..hits > 2)
dim(closenessX)[1]
[1] 117
customBiplot(closenessX, method = "range")

Select even higher alignment similarities.

closenessX <- filter(closeness, avg.align.len < 100, X..hits > 4)
dim(closenessX)[1]
[1] 199
customBiplot(closenessX, method = "range")

Select on the criteria of e-Value and abundance of a functional sequence.

closenessX <- filter(closeness, avg.eValue < -40, X..hits > 2)
dim(closenessX)[1]
[1] 152
customBiplot(closenessX, method = "range")
Select on the criteria of e-Value and abundance of a functional sequence.

closenessX <- filter(closeness, avg.eValue < -40, X..hits > 3)
dim(closenessX)[1]

[1] 126
customBiplot(closenessX, method = "range")

closenessX <- filter(closeness, avg.eValue < -50, X..hits > 2)
dim(closenessX)[1]

[1] 109
customBiplot(closenessX, method = "range")
Select on the criteria of alignment length. Since SNP aggregation tests are the next step in this analysis, the length of a correct alignment is technically helpful in differentiating SNP position. And abundance will be more than 2 to increase probabilities of correct functional annotation.

```r
closenessX <- filter(closeness, avg.align.len > 200, X..hits >= 2)
dim(closenessX)[1]
[1] 100

customBiplot(closenessX, method = "range")
```

This final biplot represent a successful unsupervised clustering of QPX strains. Differences between strains is reflected by the nature of the assembled contigs. But also to the nature of each base pair in these sequences. Top hit contigs N=100

7 Aggregation analysis of SNPS

MMETSP libraries are already been annotated. How many contigs, peptide and cds elements are indexed?

```r
contigs <- read.xls("./data/annot.stats.xlsx", sheet = 1)
```

Only mmetsp 98, 992, 1002, and 1433 are used in the remaining tests
7.1 Preferential substitution

Preferential substitution of nucleotides. It should be noted that `mmetsp0098` and `mmetsp1433` are both bigger in library size than the others. Therefore comparison of SNPs should be done for each library separately. However there is a resemblance in substitution between libraries since the pattern is quite similar for all nucleotides.

```r
defcontigs <- gather(contigs, "elements", "counts", 2:4)
ggplot(contigs,
aes(x = factor(library),
y = counts,
fill = factor(elements)) +
geom_bar(stat = "identity",
position = "dodge") +
theme_bw() +
theme(legend.direction = 'horizontal',
legend.position = 'top') +
coord_flip() +
geom_text(aes(x = factor(library),
y = counts,
ymax = counts,
label = counts,
hjusts = ifelse(sign(counts) > 0,1,0)),
position = position_dodge(width = 1)) +
labs(x = "Counts",
y = "QPX libraries")
```

```r
prefs <- read.table("./data/all.stats.txt")
prefs$V3 <- c(rep("m1002", 12),
rep("m98", 12),
rep("m992", 12),
rep("m1433", 12))
ggplot(prefs,
aes(x = factor(V1),
y = V2,
fill = factor(V3))) +
geom_bar(stat = "identity",
position = "dodge") +
theme_bw() +
labs(x = "Nucleotide substitution within called SNPs",
y = "Counts")
```
After hard filtering SNPs to the minimum from all 4 libraries, DISCARD-labelled SNPs were removed. The remaining were imported into data frames with the following columns:

1. CHROM: number of contig
2. POS: SNP position on that contig
3. ALT: alternative SNP to the reference
4. AD: allelic depth for the reference and ALT alleles
5. DP: approximate read depth
6. GQ: genotype quality
7. PL: normalized phred scaled likelihoods

The structure of the data frame is similar to the iris data.

```r
x <- c('m98', 'm1433', 'm1002', 'm992')
y <- c(16729, 15267, 9716, 6965)
dat <- data.frame(lib = x, SNPs = y)
ggplot(dat, aes(x = lib, y = SNPs)) + geom_bar(stat = "identity") + theme_bw() + coord_flip() + geom_text(aes(x = lib, y = SNPs, ymax = SNPs, label = SNPs, size = 5, col = "white", hjust = 2)) + labs(x = "Number of called SNPs with GATK", y = "QPX libraries")
```

*With low number of sample it is impossible to create a f(SNP)=strain machine learning framework. To make a binary table of SNPs at least 100 samples must be used.*
Import SNP data: data manipulation process of removing NAs and getting the same number of SNPs across all samples.

```r
m98 <- read.table("./data/m98.ml.txt", fill = NA)
m1433 <- read.table("./data/m1433.ml.txt", fill = NA)
m992 <- read.table("./data/m992.ml.txt", fill = NA)
m1002 <- read.table("./data/m1002.ml.txt", fill = NA)

colnames(m98) <- c('contigs', 'pos', 'ad1', 'ad2', 'dp', 'gq', 'pl1', 'pl2', 'pl3', 'lib')
colnames(m1433) <- c('contigs', 'pos', 'ad1', 'ad2', 'dp', 'gq', 'pl1', 'pl2', 'pl3', 'lib')
colnames(m992) <- c('contigs', 'pos', 'ad1', 'ad2', 'dp', 'gq', 'pl1', 'pl2', 'pl3', 'lib')
colnames(m1002) <- c('contigs', 'pos', 'ad1', 'ad2', 'dp', 'gq', 'pl1', 'pl2', 'pl3', 'lib')

m98 <- m98[, complete.cases(m98),]
m1433 <- m1433[, complete.cases(m1433),]
m992 <- m992[, complete.cases(m992),]
m1002 <- m1002[, complete.cases(m1002),]

index <- min(dim(m98)[1], dim(m1433)[1], dim(m992)[1], dim(m1002)[1])
set.seed(123)
mall <- rbind(m98[sample(nrow(m98), index),], m1433[sample(nrow(m1433), index),], m992[sample(nrow(m992), index),], m1002[sample(nrow(m1002), index),])
dim(mall)
```

```r
[1] 27844 10
```
7.2 Distribution of SNPs in the QPX libraries

Regressing the genome quality of SNPs on the position of the SNPs inside a contig. This shows that SNPs are concentrated in the first 10 Kb.

```
head(mall)
 contigs pos adi ad2 dp gq pl1 pl2 pl3 lib
4825 5776 244 5 18 23 99 786 0 150 m98
13214 14964 96 6 12 99 234 0 234 m98
 6857 7810 176 3 11 14 68 392 0 68 m98
14801 17502 56 9 16 99 230 0 337 m98
15760 19016 80 0 7 7 21 315 21 0 m98
 763 884 810 17 29 46 99 986 0 516 m98
```

```
with(mall, plot(pos, gq, cex = .5))
```

Regression of contigs and the read depth for each SNP in those contigs. When using libraries mapped to the combined assembly (as a reference transcriptome, not showing here) the plot shows that the depth of coverage cat split the SNPs inside the QPX contigs into 2 separate subsets. However the regression is constant when using the genome of SR v15 as a reference for mapping the libraries (as shown below).

```
with(mall, plot(contigs, dp, cex = .5))
submall <- filter(mall, dp > 50, pos <= 10000)
```

```
with(mall, plot(contigs, dp, cex = .5))
```

This plot shows that 11.41 % of the SNPs have a depth over 50 for the first 10 Kb QPX contigs size.
with(mall, plot(pos, dp, cex = .5))
## percentage of SNPs with read depth higher than 35
(nrow(submall)/nrow(mall))*100
[1] 11.4

Plotting only SNPs with DP > 50 and in contigs which length <= 10 Kb, and regressing toward
a phred-scaled adjusted likelihood for each variant or genotype likelihood.

with(submall, plot(pos, pl1, cex = .5))
summary(submall$lib)

m98  m1433  m992  m1002
1256  1127   417  377

Linear regression between position of the SNP and the normalized phred scaled likelihood,
which on its own is an accuracy determination score. Phred likelihoods (PL) are computed
for the REF/REF, REF/ALT, and ALT/ALT variants. To convert a PL to a raw likelihood L:

\[
P(L|AA) = 10^{-P_{AA}/10}
\]

These probabilities are adjusted with phred scores. They determine the probability of a
base observed given a reference genotype, an heterozygous genotype or a non-reference genotype
respectively (p11, p12, and p13).

Accordingly, REF/REF (p11) is significant. Meaning the genotype we have is homozygous for
the reference nucleotide (not the variant), but if a variant exists, thus it represents a
rare mutation (reference needed). Therefore, the raw likelihoods must be calculated with
the equation above for the picked variants and the genotype with P=1 is the most significant
genotype at that nucleotide.
fit <- lm(pos~pl1, data = submall)
summary(fit)

Call:
  lm(formula = pos ~ pl1, data = submall)

Residuals:
   Min     1Q   Median     3Q    Max
-1353   -484    -344    -97   8996

Coefficients:
            Estimate Std. Error t value  Pr(>|t|)
(Intercept)  315.2290    39.9153   7.90  3.9e-15 ***
pl1          0.1442     0.0171    8.42  < 2e-16 ***

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1280 on 3175 degrees of freedom
Multiple R-squared: 0.0219, Adjusted R-squared: 0.0216
F-statistic: 71 on 1 and 3175 DF, p-value: <2e-16

Lets get the variants with the highest probability that a genotype has been identified. PL=1 determines the genotype, either homozygous for REF (pl1) or ALT (pl3) or heterozygous REF/ALT (pl2).

submall[, 7:9] <- apply(submall[, 7:9], 2, function(x) 10^(-x/1000))
head(submall)

<table>
<thead>
<tr>
<th>contigs</th>
<th>pos</th>
<th>ad1</th>
<th>ad2</th>
<th>dp</th>
<th>gq</th>
<th>pl1</th>
<th>pl2</th>
<th>pl3</th>
<th>lib</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6470</td>
<td>215</td>
<td>43</td>
<td>21</td>
<td>64</td>
<td>99</td>
<td>0.18113</td>
<td>0.01717908</td>
<td>m98</td>
</tr>
<tr>
<td>2</td>
<td>20921</td>
<td>54</td>
<td>88</td>
<td>21</td>
<td>109</td>
<td>99</td>
<td>0.22751</td>
<td>1</td>
<td>0.00000196 m98</td>
</tr>
<tr>
<td>3</td>
<td>13280</td>
<td>47</td>
<td>78</td>
<td>19</td>
<td>97</td>
<td>99</td>
<td>0.27542</td>
<td>1</td>
<td>0.000549954 m98</td>
</tr>
<tr>
<td>4</td>
<td>10194</td>
<td>378</td>
<td>5</td>
<td>49</td>
<td>54</td>
<td>63</td>
<td>0.01064</td>
<td>1</td>
<td>0.86496792 m98</td>
</tr>
<tr>
<td>5</td>
<td>19812</td>
<td>80</td>
<td>55</td>
<td>41</td>
<td>96</td>
<td>99</td>
<td>0.04027</td>
<td>1</td>
<td>0.00693426 m98</td>
</tr>
<tr>
<td>6</td>
<td>4446</td>
<td>65</td>
<td>15</td>
<td>65</td>
<td>80</td>
<td>99</td>
<td>0.00514</td>
<td>1</td>
<td>0.49545019 m98</td>
</tr>
</tbody>
</table>

Lets extract all heterozygous alleles with at least 90 % confidence.

heteromall <- filter(submall, pl2 >= .9)

The original total number of SNPs was 3177 among which the total number of variants with an heterozygous genotype is 2554.

dat <- as.data.frame(summary(heteromall$lib))
ggplot(dat,
  aes(x = rownames(dat),
       y = dat[, 1])) +
theme_bw() +
  geom_bar(stat = "identity") +
  coord_flip() +
  geom_text(aes(x = rownames(dat),
                  y = dat[, 1],
                  ymax = dat[, 1],
                  size = 5,
                  label = dat[, 1],
                  col = "white",
                  hjust = 2)) +
  labs(x = "Number of heterozygous SNPs",
       y = "QPX libraries")
Now let's get the homozygous variants with genotype ALT/ALT with 90%.

altmall <- filter(submall, pl3 >= .9)

The total number of variants ALT/ALT is 771. Interesting thing is that using the combined assembly as a reference (not showing here), m1433 had also the highest number of homozygous alleles while m98 had half the number shown below.

```
dat <- as.data.frame(summary(altmall$lib))
ggplot(dat,
aes(x = rownames(dat),
y = dat[, 1])) +
theme_bw() +
coord_flip() +
geom_bar(stat = "identity") +
geom_text(aes(x = rownames(dat),
y = dat[, 1],
ymax = dat[, 1],
label = dat[, 1],
size = 5,
color = "white",
hjust = 2)) +
labs(x = "Number of homozygous SNPs",
y = "QPX libraries")
```

8 Protein domain annotation

Get the number of protein domains that can be predicted from the MMETSP strains. First, assembled contigs must be translated into peptides. HMMER3.2b was used for annotation. Hidden
Markov Models were generated on Pfam database. The table below lists old and new annotations against old and new Pfam v26 and v28 libraries. (> 2 years interval between versions).

```r
pfam <- read.xls("./data/pfam.xlsx", sheet = 1)

pfam
```

<table>
<thead>
<tr>
<th>domain</th>
<th>pfam</th>
<th>a98</th>
<th>s98</th>
<th>a992</th>
<th>s992</th>
<th>a1002</th>
<th>s1002</th>
<th>a1433</th>
<th>s1433</th>
</tr>
</thead>
<tbody>
<tr>
<td>virulence</td>
<td></td>
<td>655</td>
<td>5098</td>
<td>313</td>
<td>3075</td>
<td>261</td>
<td>4606</td>
<td>291</td>
<td>4794</td>
</tr>
<tr>
<td>temperature</td>
<td></td>
<td>251</td>
<td>2484</td>
<td>168</td>
<td>1680</td>
<td>141</td>
<td>2283</td>
<td>164</td>
<td>2277</td>
</tr>
<tr>
<td>salinity</td>
<td></td>
<td>22</td>
<td>163</td>
<td>13</td>
<td>91</td>
<td>9</td>
<td>123</td>
<td>10</td>
<td>137</td>
</tr>
<tr>
<td>salt tolerance</td>
<td></td>
<td>79</td>
<td>2231</td>
<td>70</td>
<td>1422</td>
<td>64</td>
<td>2097</td>
<td>66</td>
<td>2078</td>
</tr>
<tr>
<td>virulence</td>
<td></td>
<td>655</td>
<td>5306</td>
<td>331</td>
<td>3185</td>
<td>275</td>
<td>4763</td>
<td>302</td>
<td>4973</td>
</tr>
<tr>
<td>temperature</td>
<td></td>
<td>251</td>
<td>2704</td>
<td>179</td>
<td>1771</td>
<td>145</td>
<td>2436</td>
<td>170</td>
<td>2478</td>
</tr>
<tr>
<td>salinity</td>
<td></td>
<td>22</td>
<td>161</td>
<td>12</td>
<td>97</td>
<td>10</td>
<td>128</td>
<td>10</td>
<td>138</td>
</tr>
<tr>
<td>salt tolerance</td>
<td></td>
<td>79</td>
<td>2267</td>
<td>73</td>
<td>1451</td>
<td>68</td>
<td>2108</td>
<td>67</td>
<td>2138</td>
</tr>
</tbody>
</table>

`annot`:
- old
- old
- old
- old
- new
- new
- new
- new

Number of domains found in Pfam v28 for:
- Virulence
- Temperature
- Salinity
- Salt tolerance

```r
ggplot(pfam[1:4,],
 aes(x = domain,
 y = pfam)) +
 coord_flip() +
 theme_bw() +
 geom_bar(stat = "identity") +
 geom_text(aes(x = domain,
 y = pfam,
 ymax = pfam,
 label = pfam,
 size = 5,
 color = "white",
 hjust = 2)) +
 labs(x = "Number of domains in each sub library of Pfam",
 y = "Biological relevance of each Pfam subsets")
```
The number of domains that can be estimated from 4 QPX strains. For example if 2 totally different contigs are aligned to one same domain the counter is incremented by 2.

```r
allpfam <- select(pfam, contains("a"))
allpfam <- filter(allpfam, annot == "new")
allpfam

<table>
<thead>
<tr>
<th>domain</th>
<th>pfam</th>
<th>a98</th>
<th>a992</th>
<th>a1002</th>
<th>a1433</th>
<th>annot</th>
</tr>
</thead>
<tbody>
<tr>
<td>virulence</td>
<td>655 5306 3185</td>
<td>4763</td>
<td>4973</td>
<td></td>
<td></td>
<td>new</td>
</tr>
<tr>
<td>temperature</td>
<td>251 2704 1771</td>
<td>2436</td>
<td>2478</td>
<td></td>
<td></td>
<td>new</td>
</tr>
<tr>
<td>salinity</td>
<td>22 161 97</td>
<td>128 138</td>
<td></td>
<td></td>
<td></td>
<td>new</td>
</tr>
<tr>
<td>salt tolerance</td>
<td>79 2267 1451</td>
<td>2108</td>
<td>2138</td>
<td></td>
<td></td>
<td>new</td>
</tr>
</tbody>
</table>

ggplot(allpfam, aes(x = lib, y = count, fill = domain)) +
 theme_bw() +
 coord_flip() +
 geom_bar(stat = "identity", position = "dodge") +
 geom_text(aes(x = lib, y = count, ymax = count, label = count, size = 5, hjust = 1),
 position = position_dodge(width = 1)) +
 labs(x = "Count of identified peptides in Pfam", y = "QPX libraries")
```
The unique number of domains identified from the alignment. For example, if 2 totally different contigs are aligned to one domain the counter is incremented by 1.

```r
diff <- merge(oldpfam, newpfam, all = TRUE)

Keep only the domains that are unique to the new library
diff <- diff[diff$s1002 != s1002,]

Count the unique domains
unique_domain_count <- sum(diff$s1002)
```

Difference in domain-peptide alignments between old and new pfam databases. Numbers on the right belong to the new Pfam library. Numbers on the left belong to the old Pfam library.
newpfam <- select(pfam, contains("s"))
newpfam <- cbind(newpfam, annot = pfam$annot, domain = pfam$domain)
newpfam <- gather(newpfam, "lib", "count", 1:4)

ggplot(newpfam, aes(x = domain,
    y = count,
    fill = annot,
    group = lib)) +
    theme_bw() +
    coord_flip() +
    geom_bar(stat = "identity",
      position = "dodge") +
    geom_text(aes(x = domain,
      y = count,
      ymax = count,
      label = count,
      size = 5,
      hjust = 1),
      position = position_dodge(width = 1)) +
    labs(x = "Count of Pfam domains old (left) and new (right) aligned to QPX",
      y = "Pfam domain subsets")

pfam2 <- read.xls("./data/pfam.xlsx", sheet = 2)
pfam2 <- filter(pfam2, annot == "contig")
pfam2 <- gather(pfam2, "evalue", "count", 2:5)

ggplot(pfam2, aes(x = pfam,
    y = count,
    fill = evalue,
    group = lib)) +
    theme_bw() +
    geom_bar(stat = "identity",
      position = "dodge") +
    scale_fill_brewer() +
    coord_flip() +
    geom_text(aes(x = pfam,
      y = count,
      ymax = count,
      label = count,
      size = 4,
      hjust = 1),
      position = position_dodge(width = 1)) +
    labs(x = "Count of peptides",
      y = "Pfam domain subsets")

Get the number of peptides that match a significant e-value domain.

The new Pfam library will be used for the remaining tests.
How many unique protein domains were found at different evalue significance.

```r
pfam2 <- read.xls("./data/pfam.xlsx", sheet = 2)
pfam2 <- filter(pfam2, annot == "domain")
pfam2 <- gather(pfam2, "evalue", "count", 2:5)
ggplot(pfam2,
aes(x = pfam,
y = count,
 fill = evalue,
 group = lib)) +
 geom_bar(stat = "identity",
 position = "dodge") +
 scale_fill_brewer() +
 coord_flip() +
 theme_bw() +
 geom_text(aes(x = pfam,
 y = count,
 ymax = count,
 size = 4,
 label = count,
 hjust = 1),
 position = position_dodge(width = 1)) +
 labs(x = "Count of unique domains",
 y = "Pfam domain subsets")
```

"A higher resolution summary of these 2 plots can be found in the Manuscript.

9 Align assembled contigs to Genome (v15)

Here is the overall stats of the BLAT of the 4 strains RNA sequenced contigs against SR.

- genome v15. The QPX contigs have been annotated with pfam. They are aligned to the reference
genome for SNP localization. Hence we can identify SNP hotspots inside and outside functional domains.

```r
blat <- read.table("./data/pfam.stats.genomics.txt", header = T)
x <- c("m98", "m992", "m1002", "m1433")
y <- gl(4, 4, 16, labels = c("virulence", "temperature", "salinity", "salt tolerance"))
blat <- data.frame(blat, lib = c(rep(x, 4)), pfam = y)

ggplot(blat,
aes(x = pfam,
y = queryCnt,
fill = lib)) +
geom_bar(stat = "identity",
position = "dodge") +
theme_bw() +
coord_flip() +

scale_fill_brewer() +
geom_text(aes(x = pfam,
y = queryCnt,
ymax = queryCnt,
label = queryCnt,
size = 4,
hjust = 1),
position = position_dodge(width = 1)) +
labs(x = "Number of aligned QPX predicted domains to reference",
y = "Pfam subsets")
```

From the table data above the minimum identity of all contigs aligned is 0.9. The mean query is necessary to choose the number of contigs mapped. Since each contig can be found multiple times in the genome (at different alignment lengths of course) it is best if we choose the best contigs those that have a maximum alignment length (since the PCA analysis has shown previously that a longer alignment is helpful to distinguishing between strains). Contigs must be mapped/aligned once and thus, no duplicate entries should be selected. For this reason choosing an alignment length equal to the half of the mean of the alignment length gives the minimum number of duplicate contigs.

```r
ggplot(blat,
```
10 Assessing SNP hotspots in 4 QPX strains

QPX contig assemblies by the MMETSP team were used for pfam annotation (with HMMER). SNP calling on the 4 strains used Steve Roberts reference genome v15 (called with GATK). Location of SNPs in the pfam domains was inferred after alignment of the QPX contigs (those that include a predicted functional protein domain) on the reference genome (with BLAT). Finally all data were merged in one file grouped by 4 QPX strains (2 from NY, one from each VA and MA) and 3 pfam subset pathways (Virulence, salinity/salt-tolerance, temperature).

```
hotspots.raw <- read.table("./data/hotspots/all.pfam.snp.txt", header = TRUE)
```

What is the correlation between a SNP position and the first reference nucleotide that aligns to a contig containing domain?

```
ggplot(hotspots.raw,
aes(x = Position,
y = Tstart)) +
theme_bw() +
geom_point(aes(color = lib,
size = Tsize)) +
facet_wrap(- lib, ncol = 2) +
labs(x = "Position of SNPs in the reference genome",
y = "Position of the first aligned nucleotide between contig and reference")
```
How many SNPs can be found inside and outside of protein domains, those of which reside in assembled QPX contigs?

```r
count <- c(264, 749, 295)
position <- c("Upstream", "Genic", "Downstream")
dat <- data.frame(position, count)
dat$per <- round((dat$count/sum(dat[, 2]))*100, digits = 2)
ggplot(dat,
aes(x = position,
y = count)) +
theme_bw() +
geom_bar(stat = "identity") +
coord_flip() +
geom_text(aes(x = position,
y = count,
ymax = count,
label = per,
size = 4,
hjust = 2,
color = "white")) +
labs(y = "Number of SNPs (x axis) and % (bar labels)",
x = "Position of SNPs relative to contigs aligned to reference")
```

How are SNPs distributed between Pfam subsets? On the chart, the score between parenthesis is the normalized amount of SNPs. It has no units. It is just a score of the normalized counts of SNPs by the number of domains found in each subset. The counts are those of the position of SNPs inside the domains.
domain <- c("virulence", "temperature", "salinity", "salt tolerance")
count <- c(467, 306, 64, 347)
dat <- data.frame(domain, count)
dat$norm <- round(dat$count/pfam[1:4, 2], digits = 2)
ggplot(dat,
    aes(x = domain,
        y = count)) +
    theme_bw() +
    coord_flip() +
    geom_bar(stat = "identity") +
    geom_text(aes(x = domain,
                  y = count,
                  ymax = count,
                  label = paste(count, "(x", norm, ")"),
                  size = 3,
                  hjust= .5,
                  color = "white")) +
    labs(x = "Number of SNPs (nb SNPs/nb domains)",
         y = "Pfam subsets")

How many SNPs can be found outside of each domain? The outside SNPs can be upstream or downstream the aligned contig over the reference. The SNP position outside the domains is dependent on the Reference contig length, which was selected through alignment.

before <- c(155, 160, 11, 126)
after <- c(201, 89, 4, 163)
dat <- data.frame(domain, before, after)
dat <- gather(dat, "location", "count", 2:3)
ggplot(dat,
       aes(x = domain,
            y = count,
            fill = location)) +
    geom_bar(stat = "identity",
             position = "dodge") +
    theme_bw() +
    geom_text(aes(x = domain,
                   y = count,
                   ymax = count,
                   label = count,
                   size = 3,
                   hjust = 2),
               position = position_dodge(width = 1)) +
    labs(x = "Number of SNPs",
         y = "Pfam subsets")
How many SNPs can be found inside and outside protein domains within each QPX strain?

```r
before <- c(178, 21, 74, 133)
inside <- c(593, 73, 216, 448)
strain <- c("m98", "m992", "m1002", "m1433")
dat <- data.frame(strain, before, inside, after)
dat <- gather(dat, "region", "count", 2:4)
ggplot(dat,
 aes(x = strain,
 y = count,
 fill = region)) +
 geom_bar(stat = "identity") +
 geom_text(aes(x = strain,
 y = count,
 ymax = count,
 label = count,
 vjust = 1,
 size = 2),
 position = "stack") +
 theme_bw() +
 labs(x = "QPX libraries",
 y = "SNP counts")
```

How many SNPs can be found inside and outside domains between virulence, temperature, salinity and within strain?
dat <- read.xls("./data/hotspots/snps.all.pfam.xlsx", sheet = 1)
dat <- gather(dat, "region", "count", 3:5)
ggplot(dat, aes(x = lib, y = count, fill = region)) + geom_bar(stat = "identity") + geom_text(aes(x = lib, y = count, ymax = count, label = count, size = 1, hjust = .5), position = "stack") + facet_wrap(~ pfam, ncol = 2) + theme_bw() + scale_fill_hue(c = 40, l = 60) + labs(x = "QPX libraries", y = "SNP counts")

Preferential substitution inside/outside domains, per Pfam subset, and for each strain.

dat <- read.xls("./data/hotspots/snps.all.pfam.xlsx", sheet = 2)
dat <- gather(dat, "mutation", "count", 3:14)
dat$mutation <- gsub(".", ">", dat$mutation, fixed = TRUE)
dat$pfam <- factor(dat$pfam, levels = c("virulence", "temperature", "salt.tolerance", "salinity"))
dat$lib <- factor(dat$lib, levels = c("m98", "m1002", "m1433", "m992"))
ggplot(dat, aes(x = mutation, y = count, fill = region)) + geom_bar(stat = "identity") + theme_bw() + facet_wrap(lib ~ pfam, ncol = 4) + scale_fill_hue(c = 40, l = 60) + labs(x = "Nucleotide substitution within called SNPs", y = "SNP count")
Nucleotide substitution within called SNPs

Frequency of SNPs inside Pfam domains for each strain, per 1 Kbp. Normalized by the total size of contigs for each strain.

dat <- read.xls("./data/hotspots/snps.all.pfam.xlsx", sheet = 1)
inside <- c(593, 73, 216, 448)
sizen <- c(425098, 46409, 242136, 337206)
dat$inside <- with(dat, (inside/tsum)*1000)
ggplot(dat, aes(x = lib, y = inside)) + geom_bar(stat = "identity") + geom_text(aes(x = lib, y = inside, ymax = inside, label = round(inside, digits = 2), size = 1, color = "white", vjust = 1.5)) + facet_wrap(~ pfam, ncol = 2) + theme_bw()

Warning: Removed 3 rows containing missing values (position_stack).
Warning: Removed 3 rows containing missing values (geom_text).

11 Machine learning on SNP hotspots of 4 QPX strains
Let’s try a support vector machine classifier to differentiate between the QPX strains using quality data (above) of the variants. In progress ...

12 System Information
The version number of R and packages loaded for generating the vignette were:

###save(list=ls(pattern=".*|.*"),file="PD.Rdata")
sessionInfo()

R version 3.3.1 (2016-06-21)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: elementary OS Luna

locale:
[1] LC_CTYPE=en_US.UTF-8  LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8   LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8   LC_NAME=C
[9] LC_ADDRESS=C           LC_TELEPHONE=C

attached base packages:
[1] grid  stats graphics grDevices utils
datasets
tools
[7] methods base

other attached packages:
[1] tidyr_0.5.1    vegan_2.4-0   permute_0.9-0
[4] dplyr_0.5.0    latticeExtra_0.6-28 RColorBrewer_1.1-2
[7] lattice_0.20-33 gdata_2.17.0    knitr_1.13
[10] ggbiplot_0.55  scales_0.4.0    plyr_1.8.4
[13] ggplot2_2.1.0

loaded via a namespace (and not attached):
[1] Rcpp_0.12.5   cluster_2.0.4 magrittr_1.5
[4] MASS_7.3-45   munsell_0.4.3 colorspace_1.2-6
[7] R6_2.1.2      stringr_1.0.0 highr_0.6
[10] tools_3.3.1   parallel_3.3.1 nlme_3.1-128
[13] gtable_0.2.0   mgcv_1.8-12   DBI_0.4-1
[16] gtools_3.5.0   lazyeval_0.2.0 digest_0.6.9
[19] assertthat_0.1 tibble_1.0   Matrix_1.2-6
[22] formatR_1.4    evaluate_0.9 labeling_0.3
[25] stringi_1.1.1 compiler_3.3.1 RevoUtils_10.0.1