Algorithm for measuring term similarities across ontologies.

ALGORITHM: Algorithm for measuring term similarities across ontologies.

Input: term set $T_1 = \{t_{1,1}, t_{1,2}, \ldots, t_{1,n}\}$, ‘IS_A’ relationships of T_1, term set $T_2 = \{t_{2,1}, t_{2,2}, \ldots, t_{2,m}\}$, ‘IS_A’ relationships of T_2, gene set $G = \{g_1, g_2, \ldots, g_v\}$, term-gene pairs set $TG = \{(t_1, g_1), (t_1, g_2), \ldots, (t_m, g_k)\}$, weights of gene-gene pair $\{w_{g1,2}, w_{g1,3}, \ldots, w_{gp}\}$.

Output: The similarity of all the term pairs.

1. For each term-gene pair (t_i, g_j) in TG
2. Calculate weights of each pair $(w(t_i, g_j))$ using equation 1.
3. For each term-gene pair (t_i, g_j) in TG
4. Normalize weights of each pair $(nw(t_i, g_j))$ using equation 2.
5. For each term t_i in T_1 or T_2
6. Calculate weights of each pair $(w(t_i))$ using equation 3.
7. For each term t_i in T_1 or T_2
8. Normalize weights of each pair $(nw(t_i))$ using equation 4.
9. For each gene-gene pair (g_i, g_j) in T_1 or T_2
10. Normalize weights of each pair $(w(g_i, g_j))$ using equation 5.
11. For each term t_i in T_1 or T_2
12. Calculate the vector of each term (WV_t) using ITM probe.
13. For each t_i in T_1
14. For each t_j in T_2
15. Calculate the similarity of t_i and t_j ($Sim(t_i, t_j)$) using equation 7&8
16. add $Sim(t_i, t_j)$ to $Sim(T_1, T_2)$.
17. return $Sim(T_1, T_2)$.