Supplemental Table S1. Primers used in qPCR studies

<table>
<thead>
<tr>
<th>Gene name</th>
<th>GenBank accession number</th>
<th>Primer sequence 5′ to 3′</th>
<th>(R^2)</th>
<th>Amplification efficiency (%)</th>
<th>Amplicon size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diet-responsive transcripts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fc receptor-like protein 2 (fcr2)</td>
<td>DY734226</td>
<td>Forward</td>
<td>0.993</td>
<td>91.2</td>
<td>148</td>
</tr>
<tr>
<td>fatty acid-binding protein, adipocyte (fabp4)</td>
<td>NM_00114203</td>
<td>Forward</td>
<td>0.992</td>
<td>97.9</td>
<td>128</td>
</tr>
<tr>
<td>FAD-linked sulfhydryl oxidase ALR-like (fadox)</td>
<td>GE791133</td>
<td>Forward</td>
<td>0.998</td>
<td>102.3</td>
<td>144</td>
</tr>
<tr>
<td>legumain-like (lgma)</td>
<td>EG917238</td>
<td>Forward</td>
<td>0.997</td>
<td>100.8</td>
<td>184</td>
</tr>
<tr>
<td>lathosterol oxidase (sc5d)</td>
<td>NM_001140116</td>
<td>Forward</td>
<td>0.992</td>
<td>103.9</td>
<td>172</td>
</tr>
<tr>
<td>MHC-I</td>
<td>AF504022</td>
<td>Forward</td>
<td>0.982</td>
<td>101.0</td>
<td>131</td>
</tr>
<tr>
<td>proteasome subunit beta type-8 (psmb8)</td>
<td>BT058447</td>
<td>Forward</td>
<td>0.993</td>
<td>100.2</td>
<td>189</td>
</tr>
<tr>
<td>trompomodulin-4-like (mod4)</td>
<td>DW569648</td>
<td>Forward</td>
<td>0.994</td>
<td>98.1</td>
<td>153</td>
</tr>
<tr>
<td>phospholipase d4 (pld4)</td>
<td>GE792176</td>
<td>Reverse</td>
<td>0.998</td>
<td>102.2</td>
<td>159</td>
</tr>
<tr>
<td>gPC-responsive transcripts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receptors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNA helicase lgp2 (lgp2)†</td>
<td>BT045378</td>
<td>Forward</td>
<td>0.999</td>
<td>89.1</td>
<td>181</td>
</tr>
<tr>
<td>C-X-C chemokine receptor type 3 (cxcr3)</td>
<td>NM_001140493</td>
<td>Forward</td>
<td>0.998</td>
<td>90.9</td>
<td>150</td>
</tr>
<tr>
<td>CD209 antigen-like protein e (cd209e)</td>
<td>NM_001144499</td>
<td>Forward</td>
<td>0.998</td>
<td>93.6</td>
<td>106</td>
</tr>
<tr>
<td>toll-like receptor 3 (tlr3)*</td>
<td>BK008646</td>
<td>Forward</td>
<td>0.997</td>
<td>92.5</td>
<td>135</td>
</tr>
<tr>
<td>toll-like receptor 7 (tlr7)*</td>
<td>HP970585</td>
<td>Forward</td>
<td>0.994</td>
<td>98.3</td>
<td>184</td>
</tr>
<tr>
<td>scavenger receptor class B type 1-like (scarb1-a)</td>
<td>NM_001204894</td>
<td>Forward</td>
<td>0.995</td>
<td>92.1</td>
<td>153</td>
</tr>
<tr>
<td>scavenger receptor class B type 1 (scarb1-b)</td>
<td>NM_001123612</td>
<td>Forward</td>
<td>0.996</td>
<td>90.3</td>
<td>128</td>
</tr>
<tr>
<td>macrophage colony stimulating factor 1, receptor</td>
<td>CB515019</td>
<td>Forward</td>
<td>0.998</td>
<td>91.2</td>
<td>174</td>
</tr>
<tr>
<td>chemokine receptor-like 1 (cmkr1)</td>
<td>BT048928</td>
<td>Forward</td>
<td>0.999</td>
<td>80.2</td>
<td>150</td>
</tr>
<tr>
<td>CD209 antigen-like protein d (cd209d)</td>
<td>BT048947</td>
<td>Forward</td>
<td>0.993</td>
<td>88.7</td>
<td>187</td>
</tr>
<tr>
<td>Signal transduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mitogen-activated protein kinase kinase 8 (mapk8)</td>
<td>NM_001173785</td>
<td>Forward</td>
<td>0.996</td>
<td>99.7</td>
<td>144</td>
</tr>
<tr>
<td>suppressor of cytokine signaling 1 (socs1)</td>
<td>EG924375</td>
<td>Forward</td>
<td>0.999</td>
<td>94.4</td>
<td>133</td>
</tr>
<tr>
<td>suppressor of cytokine signaling 3 (socs3)</td>
<td>GE794538</td>
<td>Forward</td>
<td>0.997</td>
<td>89.2</td>
<td>172</td>
</tr>
<tr>
<td>dual specificity phosphatase 5 (dusp5)</td>
<td>BT049175</td>
<td>Forward</td>
<td>0.995</td>
<td>91.3</td>
<td>131</td>
</tr>
<tr>
<td>TNF receptor-associated factor 5-like a (traf5a)</td>
<td>DY720479</td>
<td>Forward</td>
<td>0.997</td>
<td>98.2</td>
<td>140</td>
</tr>
<tr>
<td>tyrosine kinase JAK3 (jak3)</td>
<td>DY728848</td>
<td>Forward</td>
<td>0.998</td>
<td>98.1</td>
<td>121</td>
</tr>
<tr>
<td>cytohesin-interacting like (cytip)</td>
<td>DY700802</td>
<td>Reverse</td>
<td>0.997</td>
<td>104.5</td>
<td>151</td>
</tr>
<tr>
<td>inhibitor of nuclear factor kappa-B kinase subunit alpha (ikka)</td>
<td>GE780687</td>
<td>Reverse</td>
<td>0.992</td>
<td>93.8</td>
<td>111</td>
</tr>
<tr>
<td>mitogen-activated protein kinase 13 (mapk13)</td>
<td>NM_001146148</td>
<td>Reverse</td>
<td>0.995</td>
<td>95.7</td>
<td>133</td>
</tr>
<tr>
<td>cd80</td>
<td>EG933501</td>
<td>Reverse</td>
<td>0.996</td>
<td>97.3</td>
<td>107</td>
</tr>
</tbody>
</table>
Transcription factors

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Accession</th>
<th>Forward Primer</th>
<th>Reverse Primer</th>
<th>Expression</th>
<th>log2 Fold Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>dual specificity phosphatase 6 (dusp6)</td>
<td>NM_001165367</td>
<td>Forward</td>
<td>Reverse</td>
<td>AGAAAAGAGGGGAAGCGAAG</td>
<td>CAGACAGGATGTTGGTGATG</td>
</tr>
<tr>
<td>dual specificity phosphatase 22-a (dusp22a)</td>
<td>NM_001140429</td>
<td>Forward</td>
<td>Reverse</td>
<td>AGCCTTTCGTGTAAGTA</td>
<td>CAGACAGGATGTTGGTGATG</td>
</tr>
<tr>
<td>cAMP-responsive element modulator-like (crem)</td>
<td>CB508904</td>
<td>Forward</td>
<td>Reverse</td>
<td>GCTCTCTATGCAAGCCCTAGTC</td>
<td>GCTCTCTATGCAAGCCCTAGTC</td>
</tr>
<tr>
<td>interferon regulatory factor 7 (irf7)</td>
<td>BT045216</td>
<td>Forward</td>
<td>Reverse</td>
<td>AGCCTTTCGTGTAAGTA</td>
<td>CAGACAGGATGTTGGTGATG</td>
</tr>
<tr>
<td>cyclic AMP-dependent transcription factor ATF-3 (atf3)</td>
<td>BT059485</td>
<td>Forward</td>
<td>Reverse</td>
<td>GCTCTCTATGCAAGCCCTAGTC</td>
<td>GCTCTCTATGCAAGCCCTAGTC</td>
</tr>
<tr>
<td>basic leucine zipper transcription factor, ATF-like 3 (batf3)</td>
<td>NM_001141610</td>
<td>Forward</td>
<td>Reverse</td>
<td>AGCCTTTCGTGTAAGTA</td>
<td>CAGACAGGATGTTGGTGATG</td>
</tr>
</tbody>
</table>

Immune effectors

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Accession</th>
<th>Forward Primer</th>
<th>Reverse Primer</th>
<th>Expression</th>
<th>log2 Fold Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>ring finger protein 8, E3 ubiquitin protein ligase (rnf8)</td>
<td>NM_001173788</td>
<td>Forward</td>
<td>Reverse</td>
<td>CAGACAGGATGTTGGTGATG</td>
<td>CAGACAGGATGTTGGTGATG</td>
</tr>
<tr>
<td>CASP8 and FADD-like apoptosis regulator (cflar)</td>
<td>EG868960</td>
<td>Forward</td>
<td>Reverse</td>
<td>GCTCTCTATGCAAGCCCTAGTC</td>
<td>GCTCTCTATGCAAGCCCTAGTC</td>
</tr>
<tr>
<td>interferon-induced GTP-binding protein Mx (mx)</td>
<td>NM_001139918</td>
<td>Forward</td>
<td>Reverse</td>
<td>GCTCTCTATGCAAGCCCTAGTC</td>
<td>GCTCTCTATGCAAGCCCTAGTC</td>
</tr>
<tr>
<td>optineurin (optn)</td>
<td>NM_001140289</td>
<td>Forward</td>
<td>Reverse</td>
<td>GCTCTCTATGCAAGCCCTAGTC</td>
<td>GCTCTCTATGCAAGCCCTAGTC</td>
</tr>
<tr>
<td>E3 ubiquitin-protein ligase hrc3 (herc3)</td>
<td>DY69327</td>
<td>Forward</td>
<td>Reverse</td>
<td>GCTCTCTATGCAAGCCCTAGTC</td>
<td>GCTCTCTATGCAAGCCCTAGTC</td>
</tr>
<tr>
<td>E3 ubiquitin-protein ligase herc6 (herc6)</td>
<td>EG91519</td>
<td>Forward</td>
<td>Reverse</td>
<td>GCTCTCTATGCAAGCCCTAGTC</td>
<td>GCTCTCTATGCAAGCCCTAGTC</td>
</tr>
<tr>
<td>interferon, gamma (ifng)</td>
<td>AJ841811</td>
<td>Forward</td>
<td>Reverse</td>
<td>GCTCTCTATGCAAGCCCTAGTC</td>
<td>GCTCTCTATGCAAGCCCTAGTC</td>
</tr>
<tr>
<td>viperin</td>
<td>BT047610</td>
<td>Forward</td>
<td>Reverse</td>
<td>GCTCTCTATGCAAGCCCTAGTC</td>
<td>GCTCTCTATGCAAGCCCTAGTC</td>
</tr>
<tr>
<td>beta-1 syntrophin (sntb1)</td>
<td>BT072489</td>
<td>Forward</td>
<td>Reverse</td>
<td>GCTCTCTATGCAAGCCCTAGTC</td>
<td>GCTCTCTATGCAAGCCCTAGTC</td>
</tr>
<tr>
<td>cathepsin-L1-like (ctsl1)</td>
<td>DW575971</td>
<td>Forward</td>
<td>Reverse</td>
<td>GCTCTCTATGCAAGCCCTAGTC</td>
<td>GCTCTCTATGCAAGCCCTAGTC</td>
</tr>
<tr>
<td>cathepsin-f (ctsf)</td>
<td>NM_001140206</td>
<td>Forward</td>
<td>Reverse</td>
<td>GCTCTCTATGCAAGCCCTAGTC</td>
<td>GCTCTCTATGCAAGCCCTAGTC</td>
</tr>
</tbody>
</table>

Normalizers

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Accession</th>
<th>Forward Primer</th>
<th>Reverse Primer</th>
<th>Expression</th>
<th>log2 Fold Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>60S ribosomal protein 32 (rpl32)</td>
<td>BT043656</td>
<td>Forward</td>
<td>Reverse</td>
<td>AGGCGGGTTTAAAGGTTCAGAT</td>
<td>AGGCGGGTTTAAAGGTTCAGAT</td>
</tr>
<tr>
<td>eukaryotic translation initiation factor 3 subunit D (eif3d)</td>
<td>GE777139</td>
<td>Forward</td>
<td>Reverse</td>
<td>CTCCTTTCTCTCTCTCTCTCTCT</td>
<td>CTCCTTTCTCTCTCTCTCTCTCT</td>
</tr>
</tbody>
</table>

* These transcripts were not present in the microarray significant gene list.

* The amplification efficiencies of these primers were determined using 4-point serial dilutions of cDNA. The diet-responsive transcripts were selected from RP-identified gene lists. The plC-responsive transcripts were selected from microarray-identified transcripts overlapping between SAM and RP in both dietary groups (783 DEP; see Fig. 2), except for cd209d (RP-identified in the FO5 group), and stat1 and irf7 (SAM-identified in both groups).