Text S1 Methods—additional information

(a) Colony collection, rearing, and queen classification

Twelve large polygyne nests of *S. invicta* were collected in spring 2014 from three sites in northeastern Georgia, USA (Additional file 1: Table S1). Colony inhabitants were separated from the soil [1] and transferred to large plastic trays with moistened plaster-bottom nests held in a rearing room (14:10h light:dark cycle, 28-30°C, 40-70% RH; e.g., [2]). Colonies were provided water and fed daily by alternating a high-protein diet (tuna/dog food/peanut butter mix) with a high-carbohydrate diet (pureed assorted vegetables/granulated sugar mix), supplemented with frozen crickets provided on a twice-weekly basis [2, 3].

Wingless (reproductive) queens from each polygyne colony were isolated individually in small broodless fragments of their parent colony; these fragments consisted of approximately 3g (5000) adult workers housed in small plastic trays with small nests maintained as above [4]. By four weeks after setup, the brood patterns in each fragment allowed unmated queens to be distinguished from mated queens—worker brood were absent in the former but present in the latter. Unmated queens were discarded, whereas mated queens were used to produce progenies whose *Gp-9* and multilocus microsatellite genotype distributions were studied (see Additional file 3: Figure S1). Queens producing diploid males among their progeny were not distinguished from those producing only workers for the purposes of this study (see [5] for information on different classes of reproductive queens in polygyne *S. invicta*; see [6] for information on diploid male-producing queens).

(b) Collection of embryo progenies

Families (progenies) of diploid embryos were obtained from 101 mated mother queens in order to quantify transmission ratio distortion (TRD) (Additional file 3: Figure S1). Queens were isolated with 2-3 adult workers from their colony fragment in 6mL plastic specimen cups with moistened plaster bottoms (isolation cups); after 12h the queen was removed and frozen in a -80°C freezer. Eggs laid by the queen were maintained in the cup with the workers for an
additional 48h (untended eggs often succumb to mold infection [7]). These eggs (technically, embryos within the egg coat) were then collected with a fine artists’ brush, transferred into a size “0” gelatin capsule, and immediately placed in a -80°C freezer. The age of collected embryos thus ranged from 48h to 60h post-oviposition; the normal developmental period from oviposition until eclosion of the embryo to the first instar larva in *S. invicta* is 120-144h at temperatures similar to those in our rearing room [8].

In a set of supplementary tests, we examined the aptitude of small groups of adult workers, such as those used to produce the embryo progenies in which TRD was assessed, to successfully maintain viable eggs/embryos for a period of 48h rather than cannibalize them or allow them to succumb to mold infection. Ten queens from each of four source colonies collected in the same area as the colonies used to estimate TRD were used in these supplementary tests. Single reproductive polygyne queens were held in a 10mm X 35mm petri dish for 12-24h — at this point they were removed, the eggs they laid were counted, their spermathecae were examined to ensure that they were mated, and they were confirmed to be *Gp-9* heterozygotes using the gel-based PCR method described below. A total of 1637 eggs (mean = 40.9 eggs laid/queen) were counted initially. Two or three workers from the same colony of origin as the queen were then placed in the petri dish units along with a small amount of high-carbohydrate diet. After 48h, all intact, evidently viable eggs/embryos in the dish were counted.

c) DNA extraction and *Gp-9*/microsatellite genotyping to quantify TRD

Frozen embryos were retrieved from gelatin capsules with a fine artists’ brush and spread on a microscope slide. Thirty-six embryos per progeny were transferred individually with jewelers’ forceps to single wells in 96-well assay plates containing 7µL ATL (tissue lysis) buffer (Qiagen). An additional 173µL ATL buffer and 20µL Proteinase K (Qiagen) solution were added to each well, and the plate was incubated overnight at 55°C. Following transfer of the contents of each well to a 1.5mL microcentrifuge tube, genomic DNA of the embryos was extracted using a DNeasy Blood & Tissue Kit (Qiagen) by following the manufacturer’s instructions. Final DNA
elution was accomplished by adding 20\(\mu\)L AE buffer (Qiagen) heated to 65\(^\circ\)C to each spin column, centrifuging the column, then repeating this step to recover a total 40\(\mu\)L of genomic DNA solution. After accounting for rare losses, a total of 3621 embryos were successfully extracted. DNA also was extracted from the heads of each of the 101 progeny mother queens, as well as twelve additional mother queens from the same source colonies whose progenies were not studied, by using a DNeasy Blood & Tissue Kit and following the manufacturer’s instructions (final single elution to 200\(\mu\)L).

A multiplex PCR procedure modified from Valles and Porter [9] was used to score genotypes of individual embryos at \(Gp-9\). Primers designed for this assay amplify all \(Gp-9\) allele \(B\) and allele \(b\) coding-sequence variants known from the US range of \(S.\ invicta\) [10, 11]; thus, all three major-allele genotypes (\(BB\), \(Bb\), \(bb\)) could be scored directly by running out the PCR products in agarose gels. Modifications to the procedure to increase its sensitivity given the small amounts of template DNA in each embryo were as follows. TaKaRa Ex Taq Hot Start DNA polymerase premix (Clontech; 2mM MgCl\(_2\)) was used in 30\(\mu\)L reaction volumes also containing 0.83\(\mu\)M of each of the four primers, 4\(\mu\)L of undiluted genomic DNA solution, and water. The following touchdown thermal cycling profile was employed: one cycle at 94.0\(^\circ\)C (2min); followed by two cycles at 94.0\(^\circ\)C (15s), 58.3\(^\circ\)C (15s), and 68.0\(^\circ\)C (45s); two cycles at 94.0\(^\circ\)C (15s), 57.3\(^\circ\)C (15s), and 68.0\(^\circ\)C (45s); two cycles at 94.0\(^\circ\)C (15s), 56.3\(^\circ\)C (15s), and 68.0\(^\circ\)C (45s); two cycles at 94.0\(^\circ\)C (15s), 55.2\(^\circ\)C (15s), and 68.0\(^\circ\)C (45s); 32 cycles at 94.0\(^\circ\)C (15s), 54.8\(^\circ\)C (15s), and 68.0\(^\circ\)C (45s); followed by a single final extension at 68\(^\circ\)C (5min). Total volumes of the undiluted PCR amplicons were run out in 1.5\% agarose gels, stained with ethidium bromide, and visualized under UV light. The same multiplex PCR procedure was used to score the \(Gp-9\) genotypes of the 113 mother queens, except the reactions were carried out in 15\(\mu\)L volumes with 2\(\mu\)L of genomic DNA solution diluted 1:20 (DNA:water) using a standard cycling profile [9].

Genotypes at 14 microsatellite loci (Additional file 4: Table S2) were scored using the stock genomic DNA solution from each embryo and the diluted DNA solution from each mother queen.
as template in multiplex PCR reactions [11]. One primer of each locus primer pair was labeled
at the 5′ end with one of four fluorescent dyes (FAM, PET, NED, VIC; Applied Biosystems).
Primer pairs were combined in multiplex reactions by taking into account PCR thermal cycling
profiles, dye labels, and expected size and yield of the PCR products. The complete set of 14
loci was amplified in three separate 12μL PCR reactions, each containing Hot-Start Taq 2X
Mastermix (Denville Scientific), 0.06-0.4μM of each member of 2-5 pairs of primers, 2μL of
DNA, and water. The thermal cycling profile was as follows: one cycle at 94°C (1min);
followed by 35 cycles at 94°C (30s), primer-specific annealing temperature (45s), and 72°C
(60s); followed by a single final extension at 72°C (40min). Resulting PCR amplicons were
diluted (1:100 to 1:200) and pooled into a single plate for sequencer injection. GeneScan 600
LIZ size standard (0.1μL) was added to all pool-plex dilutions, which subsequently were run on
an ABI-3730XL 96-capillary sequencer (Applied Biosystems). Microsatellite genotypes were
scored from sequence chromatograms with the aid of the software GENEMARKER
(SoftGenetics).

Any of the 3621 embryos that yielded weak or no detectable Gp-9 PCR products using the above
methods, but for which microsatellites could be scored, were subjected to a TaqMan qPCR
(Applied Biosystems) allelic discrimination fluorogenic assay [12] in order to definitively
confirm or assign Gp-9 genotype. The 109 eggs for which neither Gp-9 nor any of the
microsatellites could be scored are assumed to be “non-embryonated eggs,” which look normal
for some period of time but fail to undergo gametogenesis and may serve a trophic function [5,
13].

The small amount of genomic DNA in our study embryos is highly unlikely to have fostered
artifactual errors that affected our genotype scoring, such as may arise from allelic drop-out
(non-amplification of one allele in heterozygotes) or from maternal DNA contamination. (i) Any
artifactual scoring due to factors such as allelic drop-outs or contamination would give rise to
multilocus genotypes in progenies that often appeared inconsistent with the known maternal
genotypes. Instead, we found that queen genotypes invariably were as expected given those of
their embryos (eggs) in all 101 progenies. (ii) Artifactual scoring would generate spurious
multilocus genotypes in progenies that mimicked patterns expected from frequent multiple
paternity, but with the spurious genotypes confined to just one or a few loci per progeny and
distributed sporadically among individuals. Instead, we observed only a low frequency of
multiple paternity (as found in previous studies [4, 14, 15]), with the evidence for supernumerary
patrilines consistent across many loci in each such progeny. (iii) Spurious embryo genotype calls
would affect the twelve non-supergene loci as well as the three supergene loci, masking
differences in frequencies of progenies with significant TRD between the two classes of markers;
yet, we observed a pronounced difference in the average frequencies between the two classes.
(iv) Allelic drop-outs or other factors leading to scoring artifacts would erode the strong
congruence we observed between measures of recombination and gametic disequilibrium, as
well as between these measures and the known genomic locations for all loci; moreover,
spurious embryo genotype calls would undermine the concordant patterns of TRD we found
among the three supergene loci.

(d) Data analyses
The multilocus Gp-9 and microsatellite genotypes of diploid offspring embryos were used to
infer the social chromosome and marker-locus phased haplotypes of the eggs giving rise to each
embryo. Allele frequencies and expected heterozygosity (H_{exp}) were estimated for all 15 study
loci from 113 mother queens and 109 of their male mates, the pairwise genetic relatedness
coefficient (r) was estimated between each progeny-yielding mother queen and her mate(s) as
well as between all pairs of nestmate queens (after excluding the three supergene-linked loci),
and the fixation index F_{ST} was calculated as a measure of genetic differentiation between queens
and their mates considered as groups (again after excluding the supergene-linked loci). Exact
probabilities that the observed genotype frequencies at the 15 study loci conformed to Hardy
Weinberg equilibrium (HWE), as well as values of the inbreeding coefficient F_{IS}, were calculated for the 113 mother queens.

Associations between nestmate queen r and congruence in their k values (deviations from Mendelian segregation ratios) for the supergene were examined for pairs of queens as follows. A resampling method in which pairs of queens were randomly selected for each iteration was employed (each focal queen was used only once per iteration), with the resulting list of r values compared to the differences in supergene-linked k values for each pair (Δk) by calculating the Spearman correlation coefficient. Values of k represented the mean for the supergene-linked alleles at the three supergene loci. The procedure was run for 1000 iterations to generate a distribution and its 95% confidence limits for the correlation coefficient.

Maximum likelihood estimates of the pedigree recombination frequency (c) between each pair of marker loci were obtained by directly calculating the ratio of the number of recombinant to the total number of gametes (eggs) [16]. Estimates of the gametic disequilibrium coefficient D^* between locus pairs were calculated from the queen egg haplotypes represented in progeny embryos as well as for the haploid male mates of queens that produced study progenies. Calculated values of D^* were found to be highly correlated with those of other disequilibrium measures (i.e., D and D' [17]; data not reported).

We tested for significant TRD at each segregating locus within each progeny using one-tailed exact binomial tests (event probability $k = 0.5$) [18, 19]. Rather than evaluating statistical significance for each of the large number of these tests by adjusting the experimentwise α-value, we employed non-parametric resampling to generate confidence limits in order to minimize vulnerability to Type II errors [20, 21]. Specifically, the proportions of progenies with significant TRD at each locus were compared to the proportions expected under Mendelian segregation with a 5% Type I error rate using a combination bootstrap/subsampling (rarefaction) procedure (see e.g., [22]). This procedure involved drawing bootstrap samples of the minimum
number of segregating progenies for any locus (29 for locus \textit{i_129}, disregarding locus \textit{red_ant}, for which only twelve such progenies were genotyped); mean proportions for each locus were obtained from 1000 bootstrap replicates, with their one-tailed 95\% confidence limits taken as the 95th percentiles of the bootstrapped proportions. For comparison, we also used a standard bootstrap procedure (without rarefaction subsampling) to estimate the proportions of progenies with significant TRD (and 95\% confidence limits) for each locus. Because point estimates and their confidence limits obtained from the two types of bootstrap analyses were similar (Pearson r =0.999 and 0.945, respectively, both $p<0.001$), we present only results from the former.

We next conducted a simulation analysis to test whether observed segregation ratios at the four loci with the highest proportions of progenies with significant departures (based on binomial tests) were more extreme than expected by chance, given our specific sample sizes. An effectively infinite population pool of two gamete alleles in a 1:1 ratio (20,000 of each) was simulated, the number of gamete alleles equal to the actual progeny size was randomly drawn (with replacement) from this pool for each segregating locus in each progeny, and k was calculated; this procedure was then repeated 999 times, and the 97.5\%, 95\%, 5\%, and 2.5\% percentiles of the 1000 simulated k values were taken as the limits for statistical significance of the observed values in one- or two-tailed tests. For these and all subsequent tests involving calculation of k at the three supergene loci, k refers to the supergene alleles 92 at locus \textit{C294} and b at locus \textit{Gp-9}; for locus \textit{i_126}, where recombination with the other supergene loci is higher (Fig. 1), the specific supergene-marking allele in a progeny was inferred by virtue of its association with the former two alleles. Importantly, in all 60 of the 85 progenies that segregated at \textit{i_126} and included allele 230, this allele was determined to mark the supergene.

The frequency and significance of TRD involving the \textit{Sb} supergene across all 101 embryo progenies was evaluated further by considering the three supergene-linked loci simultaneously. The expected frequency of departures from Mendelian ratios at \textit{Sb} occurring by chance in the absence of TRD, given our sample sizes, was estimated in a first multilocus simulation analysis...
that accounted for the correlations in segregation ratios between these markers. Five progenies were designated at random to display significant TRD at *Gp-9* (the number expected due to Type I errors); each of these five progenies also was designated to display significant TRD at *C294* and *i_126* at probabilities 0.912 and 0.853, respectively, the empirically observed correlations in binomial probabilities of Mendelian ratios between these marker pairs (see main text). Progenies not assigned significant distortion at the latter markers by virtue of their association with *Gp-9* were designated at random to display significant distortion in order to yield cumulative totals of 4.25 and 3.0 progenies, respectively, departing by chance from Mendelian ratios (5% of the segregating progenies at each marker). The total number of unique progenies showing significant distortion at one or more supergene markers was tallied, and this procedure was reiterated 999 times to generate a distribution of numbers of progenies expected to exhibit non-Mendelian supergene ratios by chance. A second, far more conservative, multilocus simulation analysis that disregarded the correlations between supergene marker segregation ratios also was conducted. In this case, 5% of progenies at each locus were jointly designated at random as deviating from Mendelian segregation ratios in each of 1000 iterations, and the total number of unique progenies with significant distortion at one or more supergene markers was tallied for each iteration.

We next compared proportions of significant departures from 1:1 segregation ratios and distributions of *k* values between the supergene and non-supergene loci considered as separate classes. In a first set of analyses, we tested whether proportions of significant deviations from 1:1 ratios (determined by binomomial tests) differed between the two classes by conducting a permutation test in which differences in these proportions between paired loci belonging to the same or different classes were compared to differences between paired loci belonging to classes whose identity was randomly assigned (permutated). Specifically, differences between paired loci of the same supergene-associated status, either both supergene-linked or both not, as well as paired loci with each member in a different class, were compared to differences between paired
loci in which supergene association (class identity) of each member was assigned randomly; these assignments were constrained such that the numbers of within- and between-class pairs in the actual data were preserved in each permutation replicate ($N = 69$ and 36 pairs with members of the same and alternate supergene-associated status, respectively). Distributions of the differences obtained from the 1000 replicates conducted represent the null expectation when no difference exists in frequencies of significant departures from Mendelian ratios between supergene and non-supergene classes of loci. Non-parametric Mann-Whitney tests were employed to complement the permutation analyses; these involved comparing the observed differences in numbers of segregating progenies with $k \geq 0.65$ between paired markers of the same or alternate classes (for mean progeny sample sizes of 32-33 embryos genotyped per segregating locus, as in this study, $k=0.65$ is a general threshold level above which segregation ratios depart significantly from 1:1 according to the binomial test). In a second set of analyses, we tested whether distributions of the magnitude of departures from 1:1 ratios (unpolarized k values) differed between the two classes. A bootstrap test was conducted by constructing 5000 samples, in each of which the mean of the bootstrapped non-supergene k values was subtracted from the mean of the supergene values. The 95th percentile of the 5000 differences was taken as the one-tailed confidence limit for comparison with the expected difference of zero under the null hypothesis that supergene k values did not exceed those for non-supergene markers. This analysis was conducted using the online program STATKEY [23].

Finally, a resampling procedure was undertaken to estimate the population-wide frequencies of supergene-associated alleles within segregating progenies. A single embryo was drawn at random from each segregating progeny, then the embryo haplotype frequencies, along with the binomial probabilities of an even ratio of the alternate alleles, were calculated over the sample of segregating progenies. This procedure was repeated 999 times, with both the frequencies and binomial probabilities averaged over all resampling iterations.
References

