Additional file 1 - G matrix computation based on similarities

Similarity (S) can be measured as the number of shared alleles between individuals \(j \) and \(k \) for each genotype at locus \(i \), such as [1]

\[
S_{jk, i} = \frac{I_{j1k1} + I_{j1k2} + I_{j2k1} + I_{j2k2}}{4}
\]

For a single locus, \(S_{jk} = \)

<table>
<thead>
<tr>
<th>(\text{ind}_j / \text{ind}_k)</th>
<th>AA</th>
<th>AB</th>
<th>BB</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>1</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>AB</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>BB</td>
<td>0</td>
<td>0.5</td>
<td>1</td>
</tr>
</tbody>
</table>

We shall now show that this is similar to computing relationships using the following equations as outlined by Yang et al [2], with allele frequency \(p_i \) fixed at 0.5 for all variants.

\[
G_{jk} = \frac{1}{N} \sum_l G_{ijk} = \begin{cases}
\frac{1}{N} \sum_i \frac{(x_{ij} - 2p_i)(x_{ij} - 2p_i)}{2p_i(1 - p_i)}, & j \neq k \\
1 + \frac{1}{N} \sum_i x_{ij}^2 - (1 + 2p_i)x_{ij} + 2p_i^2}{2p_i(1 - p_i)}, & j = k
\end{cases}
\]

Let’s consider a unique locus,

\[
(1) \quad \frac{(x_{ij} - 2p_i)(x_{ij} - 2p_i)}{2p_i(1 - p_i)} = \frac{(x_{ij} - 1)(x_{ij} - 1)}{0.5}
\]

\[
(2) \quad 1 + \frac{x_{ij}^2 - (1 + 2p_i)x_{ij} + 2p_i^2}{2p_i(1 - p_i)} = 1 + \frac{x_{ij}^2 - 2x_{ij} + 0.5}{0.5}
\]

\[
= \frac{x_{ij}^2 - 2x_{ij} + 1}{0.5} = \frac{(x_{ij} - 1)(x_{ij} - 1)}{0.5}
\]

If \(x_{ij} = x_{ik} \) then \(1 = 2 \) and only one equation is needed to calculate both diagonal and off-diagonal elements.

In this case, \(G_{jk} = \)
\[
\begin{array}{cccc}
\text{ind}_j / \text{ind}_k & \text{AA [2]} & \text{AB [1]} & \text{BB [0]} \\
\hline
\text{AA [2]} & 2 & 0 & -2 \\
\text{AB [1]} & 0 & 0 & 0 \\
\text{BB [0]} & -2 & 0 & 2 \\
\end{array}
\]

S and G are linked by the following transformation: \(4 \cdot (S_{jk} - \overline{S_{jk}}) = G_{jk}\), with \(\overline{S_{jk}} = 0.5\).

In the case of multiple loci,

\[
G_{jk} = \frac{1}{N} \sum_i G_{ijk} = \frac{1}{N} \sum_i (x_{ij} - 1)(x_{ik} - 1) \cdot \frac{0.5}{0.5}
\]

Which is equivalent, in matrix notation, to \(G = \frac{(M-1)(M-1)'}{(N/2)}\), where M is the genotype matrix containing values of 0, 1 and 2.