Manual

Contents
Usage and Examples ... 2
autobuild.. 2
 options.. 2
 Example.. 3
 Advanced options ... 8
build... 10
 build options.. 11
 Example.. 11
combine... 16
 combine options.. 16
 Example.. 17
Using --astral option.. 18
Using --supertree option... 19
iview.. 19
 iview options... 20
 Example.. 20
check.. 24
 check options.. 24
 Example.. 24
PhySpeTree Tutorial ... 31
 Automatically reconstruct the tree-of-life... 31
 Reconstruct the tree-of-life by the HCP method.. 31
 Reconstruct the tree-of-life by the SSU rRNA method... 39
 Automatically reconstruct Plantae species tree .. 50
 Extend species tree with new organisms... 58
 Extend species tree by the SSU rRNA method.. 58
 Extend species tree by the HCP method... 64
Run PhySpeTree in other operating systems...68
 1. Install the Docker in your operating system..68
 2. Pull the PhySpeTree image..68
 3. check PhySpeTree image..69
 4. run PhySpeTree image...69
 5. Run PhySpeTree in Docker..69

Usage and Examples

autobuild

The input of `autobuild` module is a TXT file containing KEGG abbreviated species names, for example `organism_example_list`.

```
$ PhySpeTree -i autobuild organism_example_list.txt [options]*
```

options

<table>
<thead>
<tr>
<th>option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>Print help message and exits.</td>
</tr>
<tr>
<td>-i</td>
<td>Input a TXT file containing abbreviated species names.</td>
</tr>
<tr>
<td>-o</td>
<td>A directory to store outputs. The default is "Outdata".</td>
</tr>
<tr>
<td>-t</td>
<td>Number of processing threads (CPUs). The default is 1.</td>
</tr>
<tr>
<td>-e</td>
<td>FASTA format files to extend the tree with the --ehcp or --esrna option.</td>
</tr>
<tr>
<td>option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>-db</td>
<td>The absolute path for local database.</td>
</tr>
<tr>
<td>--hcp</td>
<td>HCP (highly conserved protein) method (default).</td>
</tr>
<tr>
<td>--ehcp</td>
<td>HCP method with extended HCP sequences.</td>
</tr>
<tr>
<td>--sma</td>
<td>SSU method.</td>
</tr>
<tr>
<td>--esrna</td>
<td>SSU rRNA method with extended SSU rRNA sequences.</td>
</tr>
</tbody>
</table>

Example

Download the example input file:

```bash
$ wget "https://yangfangs.github.io/physpetools/example/organism_example_list.txt"
```

```
--2016-10-29 19:41:53--  https://yangfangs.github.io/physpetools/example/organism_example_list.txt
Resolving yangfangs.github.io (yangfangs.github.io)... 151.101.24.133
Connecting to yangfangs.github.io (yangfangs.github.io)|151.101.24.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 39 [text/plain]
Saving to: 'organism_example_list.txt'

organism_example_list.txt  100%[==========================================]  39  --.-KB/s  in 0s
2016-10-29 19:41:54 (19.0 MB/s) - 'organism_example_list.txt' saved [39/39]
```
Automatically reconstruct species trees by HCP

$ PhySpeTree autobuild -i organism_example_list.txt --hcp

Loading organisms names success.....

The result are store in: Outdata

Now loading data and constructing phylogenetic tree......

2016-10-29 19:44:11,660 KEGG INDEX DB INFO: Read organisms names success

2016-10-29 19:44:17,296 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Ribosomal protein L1' was successful store in p1.fasta file

2016-10-29 19:44:17,919 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'DNA-directed RNA polymerase subunit alpha' was successful store in p2.fasta file

2016-10-29 19:44:18,369 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Leucyl-tRNA synthetase' was successful store in p3.fasta file

2016-10-29 19:44:18,943 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Metal-dependent proteases with chaperone activity' was successful store in p4.fasta file

2016-10-29 19:44:19,660 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Phenylalanine-tRNA synthethase alpha subunit' was successful store in p5.fasta file
Retrieve and download of highly conserved protein 'Predicted GTPase probable translation factor' was successful store in p6.fasta file.

Retrieve and download of highly conserved protein 'Ribosomal protein L11' was successful store in p7.fasta file.

Retrieve and download of highly conserved protein 'Ribosomal protein L13' was successful store in p8.fasta file.

Retrieve and download of highly conserved protein 'Ribosomal protein L14' was successful store in p9.fasta file.

......

Outputs:

log.log
Outdata/
 RAxML_bestTree.T1
 RAxML_bipartitions.T1
 RAxML_bipartitionsBranchLabels.T1
 RAxML_bootstrap.T1
 RAxML_info.T1

 temp/
 conserved_protein20161029194411/
 p1.fasta
 p2.fasta
 p3.fasta

 alignment20161029194429/
 p1.fasta
 p2.fasta
 p2.fasta

 concatenate20161029194432/
 concatenate.fasta
concatenate.fasta-gb1

concatenate.fasta-gb1.htm

concatenate.fasta-gb1.phy

- **log.log**: logs.

- **Outdata**: tree files.
 - **RAxML_bestTree.T1**: best ML search tree built by RAxML.
 - **RAxML_bipartitions.T1**: bipartition tree built by RAxML.
 - **RAxML_bipartitionsBranchLabels.T1**: bipartition tree by RAxML with branch length.
 - **RAxML_bootstrap.T1**: bootstrap result.
 - **RAxML_info.T1**: logs in running RAxML.

- **temp**: temporary data used to check the quality of outputs in each step.
 - **conserved_protein**: highly conserved proteins retrieved from the KEGG database.
 - **alignment**: aligned sequences.
 - **concatenate**: concatenated sequences and conserved blocks.
 - **concatenate.fasta**: concatenated HCP sequences.
 - **concatenate.fasta-gb1**: conserved blocks (by Gblocks).
 - **concatenate.fasta-gb1.htm**: conserved blocks displayed in html.
 - **concatenate.fasta-gb1.phy**: conserved blocks in the PHYLIP format.

Automatically reconstruct species trees by SSU rRNA

```bash
$ PhySpeTree autobuild -i organism_example_list.txt --srna
```
Loading organisms names success.....

The result are store in: Outdata

Now loading data and constructing phylogenetic tree......

2016-10-29 20:12:49,353 SSU rRNA DB INFO: Read organisms names success
2016-10-29 20:12:54,582 SSU rRNA DB INFO: Retrieve and download of organism 'aca' SSU rRNA sequence was successful
2016-10-29 20:12:56,831 SSU rRNA DB INFO: Retrieve and download of organism 'ace' SSU rRNA sequence was successful
2016-10-29 20:12:59,182 SSU rRNA DB INFO: Retrieve and download of organism 'acl' SSU rRNA sequence was successful
2016-10-29 20:13:01,545 SSU rRNA DB INFO: Retrieve and download of organism 'acn' SSU rRNA sequence was successful
2016-10-29 20:13:04,096 SSU rRNA DB INFO: Retrieve and download of organism 'aco' SSU rRNA sequence was successful
2016-10-29 20:13:06,972 SSU rRNA DB INFO: Retrieve and download of organism 'acp' SSU rRNA sequence was successful
2016-10-29 20:13:09,943 SSU rRNA DB INFO: Retrieve and download of organism 'adg' SSU rRNA sequence was successful
2016-10-29 20:13:12,707 SSU rRNA DB INFO: Retrieve and download of organism 'adk' SSU rRNA sequence was successful
2016-10-29 20:13:16,015 SSU rRNA DB INFO: Retrieve and download of organism 'aeh' SSU rRNA sequence was successful
2016-10-29 20:13:18,969 SSU rRNA DB INFO: Retrieve and download of organism 'aeq' SSU rRNA sequence was successful

Outputs:

log.log
Outdata/
 RAxML_bestTree.T1
 RAxML_bipartitions.T1
 RAxML_bipartitionsBranchLabels.T1
RAxML_bootstrap.T1
RAxML_info.T1
temp/
rna_sequence20161029201249/
 rna_sequence.fasta
rna_alignment20161029201319/
 rna_sequence.fasta
 rna_sequence.fasta-gbl
 rna_sequence.fasta-gbl.htm
 rna_sequence.fasta-gbl.phy

- **log.log**: logs.
- **Outdata**: tree files like the HCP method.
- **temp**: temporary data used to check the quality of outputs in each step.

 - **rna_sequence**: SSU rRNA sequences retrieved from the SILVA database.
 - **rna_alignment**: aligned sequences and conserved blocks.
 - rna_sequence.fasta: aligned SSU rRNA sequences.
 - rna_sequence.fasta-gbl: conserved blocks (by Gblocks).
 - rna_sequence.fasta-gbl.htm: conserved blocks displayed in html.
 - rna_sequence.fasta-gbl.phy: conserved blocks in the PHYLIP format.

Advanced options

Advanced options of internal software called in PhySpeTree can be set. These options are enclosed in single quotes and start with a space.

Here is an example of setting RAxML advanced options by `--raxml_p`:
Multiple sequence alignment by MUSCLE (default).

Set MUSCLE advanced parameters, please see [MUSCLE Manual](#).
The default option:

<table>
<thead>
<tr>
<th>option</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-maxiter</td>
<td>Maximum number of iterations to run. The default is 100.</td>
</tr>
</tbody>
</table>

Multiple sequence alignment by ClustalW2.

Set ClustalW2 advanced parameters, please see [Clustalw Help](#).

Multiple sequence alignment by mafft.

Set mafft advance parameters. Here use mafft default parameters, please see [mafft algorithms](#).

Trim by Gblocks.(default)

Set Gblocks advanced parameters, please see [Gblocks documentation](#).
The default option:

<table>
<thead>
<tr>
<th>option</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-t</td>
<td>Choice type of sequence (default).</td>
</tr>
</tbody>
</table>

-e | Generic file extension. The default in PhySpeTree is "-gbl1". |

Trim by trimal.

Trim by trimal.
Set trimal advance parameters, please see trimal command line.

--ranxml

Reconstruct species tree by RAxML (default).

--raxml_p

Set RAxML advanced parameters, please see RAxML Manual.

The default option:

<table>
<thead>
<tr>
<th>option</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-f</td>
<td>select algorithm. The default in PhySpeTree is a, rapid Bootstrap analysis and search for bestsco program run.</td>
</tr>
<tr>
<td>-m</td>
<td>Model of binary (morphological), nucleotide, multiState, or amino acid substitution. The PhySpeTree PROTGAMMAJTTX.</td>
</tr>
<tr>
<td>-p</td>
<td>Specify a random number seed for the parsimony inferences. The default in PhySpeTree is 12345</td>
</tr>
<tr>
<td>-x</td>
<td>Specify an integer number (random seed) and turn on rapid bootstrapping. The default in PhySpeTree</td>
</tr>
<tr>
<td>-N</td>
<td>The same with -# specify the number of alternative runs on distinct starting trees. The default in PhySpeTree</td>
</tr>
</tbody>
</table>

--fasttree

Reconstruct species tree by FastTree.

--fasttree_p

Set FastTree advanced parameters, please see FastTree Helps.

--iqtree

Reconstruct species tree by iqtree.

--iqtree_p

Set iqtree advanced parameters, please see IQ-TREE.

build

The build module is used to reconstruct species trees with manually prepared sequences. Advanced options are the same as autobuild module.
multiple method

$ PhySpeTree build -i example_hcp -o output --multiple

single method

$ PhySpeTree build -i example_16s_ssurna.fasta -o output --single

build options

<table>
<thead>
<tr>
<th>option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>Print help message and exits.</td>
</tr>
<tr>
<td>-i</td>
<td>Input a TXT file containing abbreviated species names.</td>
</tr>
<tr>
<td>-o</td>
<td>A directory to store outputs. The default is "Outdata".</td>
</tr>
<tr>
<td>-t</td>
<td>Number of processing threads (CPUs). The default is 1.</td>
</tr>
<tr>
<td>--multiple</td>
<td>Specify concatenate highly conserved protein method to reconstruct phylogenetic tree.</td>
</tr>
<tr>
<td>--single</td>
<td>Use SSU rRNA data to reconstruct phylogenetic tree.</td>
</tr>
</tbody>
</table>

Example

Build species trees by manually prepared HCP

The HCP sequences belonging to the same class are prepared in one FASTA format file, and all FASTA format files are stored in the same folder. For example, the folder example_build_hcp contains 10 classes of HCP (p1~p10) corresponding to 10 different organisms. There is no limit number of HCP sequences. We recommend no less than 10 highly conserved proteins to ensure the accuracy of the reconstructed phylogenetic tree.

Download and decompress the example input file:
$ wget "https://yangfangs.github.io/physpetools/example/example_build_hcp.tar.gz"

--2016-10-29 20:40:41-- https://yangfangs.github.io/physpetools/example/example_build_hcp.tar.gz
Resolving yangfangs.github.io (yangfangs.github.io)... 151.101.48.133
Connecting to yangfangs.github.io (yangfangs.github.io)|151.101.48.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 17419 (17K) [application/octet-stream]
Saving to: 'example_build_hcp.tar.gz'

example_build_hcp.tar.gz 100%[==================================] 17.01K --.-KB/s in 0.009s

2016-10-29 20:40:42 (1.92 MB/s) - 'example_build_hcp.tar.gz' saved [17419/17419]

$ tar -xzvf example_build_hcp.tar.gz

example_build_hcp/

example_build_hcp/p1.fasta
example_build_hcp/p2.fasta
example_build_hcp/p3.fasta
example_build_hcp/p4.fasta
example_build_hcp/p5.fasta
example_build_hcp/p6.fasta
example_build_hcp/p7.fasta
example_build_hcp/p8.fasta
example_build_hcp/p9.fasta
example_build_hcp/p10.fasta

Check HCP:

$ cd example_build_hcp/
$ cat p1.fasta
>ae
MARLTKRQKAIREDIPAQQYPVAELGLLRELPGAKFATESVEVAVNLGVDPRKSDQIVR
GSTVLPNTGKTVRVAFAQGDAEAAKEAGADIVGMDLAEQVKGGNFDFVVAAPDA
MGVGPRLGTPILGPRGMPKVKGTVPDVAGVKNAQCGQVRYRDKGGHTICGKVD
EVEALQQNLQALITDLQKLPANSKGVYLKAVSTTMGPGMLAVLASLET
>ad
MAKLTKKQKQQQKVDSTKLYPFAEAVLKEATAKFDSEIDVQVLGDAKKSDQVVR
GAVVLPNTGKTVRVAFAQGKAEEAAGADIVGMDLAAQVKAGDMFDVIAAPDA
MRVVGTLQILGPRGMPKVKGTVPDVATAVKNAQCGQVFVDKAGIVHTCTGGRS
ADDKLOQNLALIEALNKAKPASSKGVYLKAVSTTMGPGMLAVLASLET
>ac
MAVAKYYKKAAEKVDRTKRYKLDEAMSLVKQTATKFDETVIDASINLGVDPKRADQQVVR
GAVVLPNTGKTVRVAFAQGKAEEAAGADIVGMDLAAQVKAGDMFDVIAAPDA
MGVGPRLGTPILGPRGMPKVKGTVPDVATAVKNAQCGQVFVDKAGIVHTCTGGRS
ADDKLOQNLALIEALNKAKPASSKGVYLKAVSTTMGPGMLAVLASLET
>ad
MPKHGGKYLAELKQVDRKLYPDYEALIEAVKRLASAKFDSTEVAVRGLVDRPRAADQQVVR
GAVVLPNTGKTVRVAFAQGKAEEAAGADIVGMDLAAQVKAGDMFDVIAAPDA
MGVGPRLGTPILGPRGMPKVKGTVPDVATAVKNAQCGQVFVDKAGIVHTCTGGRS
ADDKLOQNLALIEALNKAKPASSKGVYLKAVSTTMGPGMLAVLASLET
Reconstruct species tree and store outputs in the build_hcp_tree folder:

PhySpeTree build -i example_build_hcp -o build_hcp_tree --multiple
Build species trees by manually prepared SSU rRNA

All SSU rRNA sequences are prepared in one FASTA format file, for example example_build_srna.

Download and decompress the example input file:

```
$ wget "https://yangfangs.github.io/physpetools/example/example_build_srna.fasta"

--2016-10-29 20:56:31--  https://yangfangs.github.io/physpetools/example/example_build_srna.fasta
Resolving yangfangs.github.io (yangfangs.github.io)... 151.101.48.133
Connecting to yangfangs.github.io (yangfangs.github.io)|151.101.48.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 14982 (15K) [application/octet-stream]
Saving to: 'example_build_srna.fasta'

example_build_srna.fasta   100%[==============================================] 14.63K --.-KB/s in 0.005s

2016-10-29 20:56:33 (3.14 MB/s) - 'example_build_srna.fasta' saved [14982/14982]
```

```
$ grep '>' example_build_srna.fasta
>aca
>ace
>acl
>acn
>aco
>acp
>adg
>adk
>aeh
```
Reconstruct species tree and store outputs in the `build_srna_tree` folder:

```
PhySpeTree build -i example_build_srna.fasta -o build_srna_tree --single --fas ttree
```

combine

The **combine** module is used to combine trees generated from different methods. It contains two steps, at first merge different tree files into the same file. You can use `cat` bash command in the Linux system, for example:

```
$ cat tree1.tree tree2.tree > combineTree.tree
```

Then, use **combine**:

```
$ PhySpeTree combine -i combineTree.tree [options]*
```

combine options

<table>
<thead>
<tr>
<th>option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>Print help message and exits.</td>
</tr>
<tr>
<td>-i</td>
<td>Input PHYLIP format file containing multiple trees.</td>
</tr>
<tr>
<td>-o</td>
<td>Output directory. The default is "combineTree".</td>
</tr>
<tr>
<td>--mr</td>
<td>Majority rule trees.</td>
</tr>
<tr>
<td>--mre</td>
<td>Extended majority rule trees.</td>
</tr>
<tr>
<td>--strict</td>
<td>Strict consensus trees.</td>
</tr>
<tr>
<td>option</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>--astral</td>
<td>Use ASTRAL combine multi gene tree.</td>
</tr>
<tr>
<td>--supertree</td>
<td>Use Spr_Supertree combining conflicting evolutionary histories that are due to lateral gene transfer.</td>
</tr>
</tbody>
</table>

Example

`example_combine_tree.tar.gz` contains `tree1.tree` and `tree2.tree` reconstructed by the HCP and SSU rRNA method, respectively.

Download and decompress the example input file:

```bash
$ wget "https://yangfangs.github.io/physpetools/example/example_combine_tree.tar.gz"
```

```
--2016-10-30 13:32:06--  https://yangfangs.github.io/physpetools/example/example_combine_tree.tar.gz
Resolving yangfangs.github.io (yangfangs.github.io)... 151.101.48.133
Connecting to yangfangs.github.io (yangfangs.github.io)|151.101.48.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 661 [application/octet-stream]
Saving to: 'example_combine_tree.tar.gz'

example_combine_tree.tar.gz 100%[==========================================] 661 --.-KB/s in 0s

2016-10-30 13:32:07 (380 MB/s) - 'example_combine_tree.tar.gz' saved [661/661]"
$ tar -zxvf example_combine_tree.tar.gz

example_combine_tree/
example_combine_tree/tree2.tree
example_combine_tree/tree1.tree

Merge tree1.tree and tree2.tree:

$ cd example_combine_tree/
$ cat tree1.tree tree2.tree > combine.tree

Combine trees:

PhySpeTree combine -i combine.tree -o combineTree

Outputs:

combine/
   RAxML_info.T1
   RAxML_MajorityRuleConsensusTree.T1

- RAxML_info.T1: logs in running RAxML.
- RAxML_MajorityRuleConsensusTree.T1: the majority rule consensus tree.

Using **--astral** option

Notice: The --astral option calls the third-party software ASTRAL. Please be aware that JRE has been installed in your running environments. For users who run the Docker image of PhySpeTree, JRE is unnecessary.

PhySpeTree combine -i combine.tree -o combineTree --astral

Outputs:

combineTree/
    combine.tree
Using `--supertree` option

- Use Spr_Supertree combining conflicting evolutionary histories that are due to lateral gene transfer (LGT).

Download example tree:

```
$ wget "https://yangfangs.github.io/physpetools/example/trees.tree"
```

```
Resolved yangfangs.github.io (yangfangs.github.io)... 185.199.108.153, 185.199.109.153, 185.199.110.153, ...
Connecting yangfangs.github.io (yangfangs.github.io)|185.199.108.153|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 661 [application/octet-stream]
Saving to: "trees.tree"

trees.tree 100%[==>] 140
 --.-KB/s 用时 0s

2019-10-02 15:49:44 (168 MB/s) - saved "trees.tree" [140/140])
```

`supertree` option:

```
PhySpeTree combine -i trees.tree -o Supertree --supertree
```

Outputs:

```
Supertree/
```

```
 spr_supertree.tree
```

iview
PhySpeTree provides the iview module to annotate taxonomic information (kingdom, phylum, class, or order) of output trees and to generate configure files linked to iTol.

```
$ PhySpeTree iview -i organism_example_list.txt --range
```

### iview options

<table>
<thead>
<tr>
<th>option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>Print help message and exits.</td>
</tr>
<tr>
<td>-i</td>
<td>Input a TXT file containing abbreviated species names.</td>
</tr>
<tr>
<td>-o</td>
<td>A directory to store outputs. The default is &quot;iview&quot;.</td>
</tr>
<tr>
<td>-a</td>
<td>Colored ranges [kingdom, phylum, class or order].</td>
</tr>
<tr>
<td>-r</td>
<td>--range</td>
</tr>
<tr>
<td>-c</td>
<td>--color</td>
</tr>
<tr>
<td>-l</td>
<td>--labels</td>
</tr>
</tbody>
</table>

### Example

Download the example file:

```
$ wget "https://yangfangs.github.io/physpetools/example/organism_example_list.txt"
```

Resolving yangfangs.github.io (yangfangs.github.io) ... 151.101.48.133`
Connecting to yangfangs.github.io (yangfangs.github.io)|151.101.48.133|:44
3... connected.

HTTP request sent, awaiting response... 200 OK

Length: 39 [text/plain]

Saving to: 'organism_example_list.txt'

organism_example_list.txt 100%[===========================================
===>] 39 --.-KB/s in 0s

2016-10-30 13:40:50 (21.5 MB/s) - ‘organism_example_list.txt’ saved [39/39]

Annotate the tree by kingdom

$ PhySpeTree iview -i organism_example_list.txt --range -a kingdom

Color range by kingdom was complete.

The color range file is store in the iview folder:

$ cd iview

$ cat range_color_by_kingdom.txt

TREE_COLORS
SEPARATOR TAB
DATA
aca range #BEBF5A Prokaryotes
ace range #BEBF5A Prokaryotes
acl range #BEBF5A Prokaryotes
acn range #BEBF5A Prokaryotes
aco range #BEBF5A Prokaryotes
acp range #BEBF5A Prokaryotes
adg range #BEBF5A Prokaryotes
adk range #BEBF5A Prokaryotes
aeh range #BEBF5A Prokaryotes
Annotate the tree by phylum

```
 PhySpeTree iview -i organism_example_list.txt --range -a phylum
```

Color range by phylum was complete.

The color range file is store in the `iview` folder:

```
 cd iview

 cat range_color_by_phylum.txt
```

Annotate the tree by class

```
 PhySpeTree iview -i organism_example_list.txt --range -a class
```

Color range by class was complete.

The color range file is store in the `iview` folder:

```
 cd iview

 cat range_color_by_class.txt
```
```plaintext
TREE_COLORS
SEPARATOR TAB
DATA
aca range #9AB7F3 Acidobacteria
ace range #99D1DB Actinobacteria
acl range #A5E58D Tenericutes
acn range #94F1C1 Alphaproteobacteria
aco range #D67A21 Synergistetes
acp range #DD9284 Deltaproteobacteria
adg range #3E70B8 Firmicutes - Clostridia
adk range #DDC8B7 Betaproteobacteria
aeh range #72E137 Gammaproteobacteria - Others
aeq range #99D1DB Actinobacteria

Annotate the tree by order

$ PhySpeTree iview -i organism_example_list.txt --range -a order

Color range by order was complete.

The color range file is store in the iview folder:

$ cd iview
$ cat range_color_by_order.txt
```

```
TREE_COLORS
SEPARATOR TAB
DATA
aca range #AA8761 Acidobacterium
ace range #8770BC Acidothermus
acl range #3BD26B Acholeplasma
acn range #D1B487 Anaplasma
aco range #D96D21 Aminobacterium
acp range #AC4E16 Anaeromyxobacter
```
check

The check module is used to check whether input organisms are in pre-built databases.

$ PhySpeTree check -i organism_example_list.txt --ehcp

check options

<table>
<thead>
<tr>
<th>option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>Print help message and exits.</td>
</tr>
<tr>
<td>-i</td>
<td>Input a TXT file containing abbreviated species names.</td>
</tr>
<tr>
<td>-o</td>
<td>A directory to store outputs. The default is &quot;check&quot;.</td>
</tr>
<tr>
<td>--hcp</td>
<td>Check whether organisms are supported in the KEGG database.</td>
</tr>
<tr>
<td>--ehcp</td>
<td>Check input organisms prepare for extend autobuild tree module.</td>
</tr>
<tr>
<td>--sma</td>
<td>Check whether organisms are supported in the SILVA database.</td>
</tr>
</tbody>
</table>

Example

Check extended organisms in autobuild
Determine proteins to be prepared in the `autobuild` module with the `--ehcp` option, for example, `organism_example_list.txt`

Download the example file:

```
$ wget "https://yangfangs.github.io/physpetools/example/organism_example_list.txt"
```

```
Resolving yangfangs.github.io (yangfangs.github.io)... 151.101.48.133
Connecting to yangfangs.github.io (yangfangs.github.io)|151.101.48.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 39 [text/plain]
Saving to: `organism_example_list.txt`

organism_example_list.txt 100%[===] 39 --.-KB/s in 0s
```

2016-10-30 13:40:50 (21.5 MB/s) - `organism_example_list.txt` saved [39/39]

Check:

```
$ PhySpeTree check -i organism_example_list.txt --ehcp

'Ribosomal protein L1' ----------------------------------> p1.fasta

'DNA-directed RNA polymerase subunit alpha' ---------------------------------> p2.fasta

'Leucyl-tRNA synthetase' ----------------------------------> p3.fasta

'Metal-dependent proteases with chaperone activity' -------------------------
---------> p4.fasta
```
"Phenylalanine-tRNA synthethase alpha subunit" ------------------------------
----> p5.fasta

"Predicted GTPase probable translation factor" ------------------------------
----> p6.fasta

"Ribosomal protein L11'" -------------------------------> p7.fasta

"Ribosomal protein L13'" -------------------------------> p8.fasta

"Ribosomal protein L14'" -------------------------------> p9.fasta

"Ribosomal protein L22'" -------------------------------> p10.fasta

"Ribosomal protein L3'" -------------------------------> p11.fasta

"Ribosomal protein L5'" -------------------------------> p12.fasta

"Ribosomal protein S11'" -------------------------------> p13.fasta

"Ribosomal protein S17'" -------------------------------> p14.fasta

"Ribosomal protein S2'" -------------------------------> p15.fasta

"Ribosomal protein S3'" -------------------------------> p16.fasta

"Ribosomal protein S4'" -------------------------------> p17.fasta

"Ribosomal protein S5'" -------------------------------> p18.fasta
The check result is stored in the check folder. In physpe_echp_extend.txt file indicates class of HCP and their corresponding names, which will be used to prepare extended HCP sequences.

```
$ cd check
$ cat physpe_echp_extend.txt
'Ribosomal protein L1' ----------------------------------> p1.fasta
'DNA-directed RNA polymerase subunit alpha' ------------------------------------
-> p2.fasta
'Leucyl-tRNA synthetase' ----------------------------------> p3.fasta
'Metal-dependent proteases with chaperone activity' --------------------------------
---------> p4.fasta
'Phenylalanine-tRNA synthetase alpha subunit' -----------------------------------
------> p5.fasta
```
Check whether input organisms are supported in PhySpeTree

Check whether input species are supported by the KEGG database when using the "hcp" method, for example example download.

Download the example file:

```bash
$ wget "https://yangfangs.github.io/physpetools/example/191speciesnames.txt"
```
The check results show one organism named 'ges' is not supported in PhySpeTree:

```
$ PhySpeTree check -i 191speciesnames.txt --hcp
WARNING: The following species are not supported by KEGG DATABASE:
ges
Checked whether the input species names in KEGG DATABASE completed.
```

Check whether input species are supported by SILVA database when using the `srna` method, for example [example download](https://yangfangs.github.io/physpetools/example/191speciesnames.txt)

Download the example file:

```
$ wget "https://yangfangs.github.io/physpetools/example/191speciesnames.txt"
```
The check results show 28 organisms are not supported in PhySpeTree:

```
[project] [yangfang@localhost test_check] $ PhySpeTree check -i 191speciesnames.txt --srna

WARNING: The following species are not supported by SILVA DATABASE:
neq
ape
tac
mmp
gla
tps
cho
/ddi
spo
aga
tru
/mbu
lin
ban
bce
/ijo
san
spg
```
Checked whether the input species names in SILVA DATABASE completed.

For organisms not in the pre-built list, PhySpeTree provides extend options (`echp` or `--esrna`) to insert manually prepared sequences.

## PhySpeTree Tutorial

### Automatically reconstruct the tree-of-life

Here we show how to use PhySpeTree to reconstruct tree-of-life (191 organisms) by two methods (HCP and SSU rRNA).

Reconstruct the tree-of-life by the HCP method

**Concept**
The main concept of the HCP method is to concatenate highly conserved proteins into a supermatrix and then build species tree. Here we prepared 31 classes of HCP to build the tree.

1. Prepare input species

Download 191 KEGG abbreviated species names:

```bash
$ wget "https://yangfangs.github.io/physpetools/example/191speciesnames.txt"
```

```
--2016-10-30 15:26:06-- https://yangfangs.github.io/physpetools/example/191speciesnames.txt
Resolving yangfangs.github.io (yangfangs.github.io)... 151.101.48.133
Connecting to yangfangs.github.io (yangfangs.github.io)|151.101.48.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 773 [text/plain]
```
2. Reconstruct the species tree

Use \texttt{--hcp} option to specify the HCP method.

```
$ PhySpeTree autobuild -i 191speciesnames.txt -o 191_pro --hcp
```

Loading organisms names success.....

The result are store in: 191_pro

Now loading data and constructing phylogenetic tree.....

2016-10-30 15:32:07,894 Checking organisms INFO: The species: ges can't match in KEGG protein index database

2016-10-30 15:32:07,894 Checking organisms WARNING: These species can’t match in KEGG protein index database so removed and reconstruct phylogenetic tree.

2016-10-30 15:32:07,894 KEGG INDEX DB INFO: Read organisms names success
2016-10-30 15:32:34,213 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Ribosomal protein L1' was successful store in p1.fasta file
2016-10-30 15:33:00,679 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Leucyl-tRNA synthetase' was successful store in p2.fasta file
2016-10-30 15:33:25,052 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Ribosomal protein L14' was successful store in p3.fasta file
2016-10-30 15:33:49,649 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Ribosomal protein L5' was successful store in p4.fasta file
2016-10-30 15:34:14,510 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Ribosomal protein S7' was successful store in p5.fasta file
2016-10-30 15:34:41,123 KEGG INDEX DB INFO: Retrieve from KEGG database 6 highly conserved proteins
......
3. Get the output tree

PhySpeTree provides the `iview` module to annotate trees with taxonomic information.

The output configure files can be directly used in iTOL, which is a very popular online tool for the display, annotation, and management of phylogenetic trees.

Use the `--labels` option to change abbreviated species names to full names:

```
$ PhySpeTree iview -i 191speciesnames.txt --labels

Change abbreviation names to full names complete
change labels file was save in iview/labels.txt
```
$ cd iview

$ cat labels.txt

LABELS

SEPARATOR TAB

DATA

neq    Nanoarchaeum equitans
pai    Pyrobaculum aerophilum
ape    Aeropyrum pernix
sto    Sulfolobus tokodaii
ssoa   Sulfolobus solfataricus SULA
tvo    Thermoplasma volcanium
tac    Thermoplasma acidophilum
afu    Archaeoglobus fulgidus DSM 4304
hal    Halobacterium sp. NRC-1
mac    Methanosarcina acetivorans
mma    Methanosarcina mazei Go1
pfu    Pyrococcus furiosus DSM 3638
pho    Pyrococcus horikoshii
pab    Pyrococcus abyssi
mth    Methanothermobacter thermautotrophicus
mka    Methanopyrus kandleri
mmp    Methanococcus maripaludis S2
.....
Use the `-a` option to color branch ranges by phylum (default):

```
$ PhySpeTree iview -i 191speciesnames.txt -o iview --range -a phylum
Color range by phylum was complete.
Color range annotation was saved in iview/range_color_by_phylum.txt

$ cd iview

$ cat range_color_by_phylum.txt
TREE_COLORS
SEPARATOR TAB
```
<table>
<thead>
<tr>
<th>DATA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>neq</td>
<td>range #996433 Archaea</td>
</tr>
<tr>
<td>pai</td>
<td>range #996433 Archaea</td>
</tr>
<tr>
<td>ape</td>
<td>range #996433 Archaea</td>
</tr>
<tr>
<td>sto</td>
<td>range #996433 Archaea</td>
</tr>
<tr>
<td>ssoa</td>
<td>range #996433 Archaea</td>
</tr>
<tr>
<td>tvo</td>
<td>range #996433 Archaea</td>
</tr>
<tr>
<td>tac</td>
<td>range #996433 Archaea</td>
</tr>
<tr>
<td>afu</td>
<td>range #996433 Archaea</td>
</tr>
<tr>
<td>hal</td>
<td>range #996433 Archaea</td>
</tr>
<tr>
<td>mac</td>
<td>range #996433 Archaea</td>
</tr>
<tr>
<td>mma</td>
<td>range #996433 Archaea</td>
</tr>
<tr>
<td>pfu</td>
<td>range #996433 Archaea</td>
</tr>
<tr>
<td>pho</td>
<td>range #996433 Archaea</td>
</tr>
<tr>
<td>pab</td>
<td>range #996433 Archaea</td>
</tr>
<tr>
<td>mth</td>
<td>range #996433 Archaea</td>
</tr>
<tr>
<td>mka</td>
<td>range #996433 Archaea</td>
</tr>
<tr>
<td>mmp</td>
<td>range #996433 Archaea</td>
</tr>
<tr>
<td>mja</td>
<td>range #996433 Archaea</td>
</tr>
<tr>
<td>.....</td>
<td></td>
</tr>
</tbody>
</table>
Reconstruct the tree-of-life by the SSU rRNA method

Concept
PhySpeTree provides `--srna` option to reconstruct species trees by the SSU rRNA method. The concept of this method is to align SSU rRNA sequences and then reconstruct the species tree.

1. Prepare input species

```
$ wget "https://yangfangs.github.io/physpetools/example/191speciesnames.txt"
```

```
--2016-10-30 15:26:06-- https://yangfangs.github.io/physpetools/example/191speciesnames.txt
Resolving yangfangs.github.io (yangfangs.github.io)... 151.101.48.133
Connecting to yangfangs.github.io (yangfangs.github.io)|151.101.48.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 773 [text/plain]
```
2. Reconstruct the species tree

```
$ PhySpeTree autobuild -i 191speciesnames.txt -o 191_rna --srna

Loading organisms names success.....

The result are store in:191_rna

Now loading data and constructing phylogenetic tree......
```

```
2016-10-30 15:40:17,107 Checking organisms INFO: The organism: neq can't match in SSU rRNA database
2016-10-30 15:40:17,107 Checking organisms INFO: The organism: ape can't match in SSU rRNA database
2016-10-30 15:40:17,107 Checking organisms INFO: The organism: tac can't match in SSU rRNA database
2016-10-30 15:40:17,107 Checking organisms INFO: The organism: mmp can't match in SSU rRNA database
2016-10-30 15:40:17,107 Checking organisms INFO: The organism: gla can't match in SSU rRNA database
2016-10-30 15:40:17,107 Checking organisms INFO: The organism: tps can't match in SSU rRNA database
```
2016-10-30 15:40:17,107 Checking organisms INFO: The organism: cho can't match in SSU rRNA database
2016-10-30 15:40:17,107 Checking organisms INFO: The organism: ddi can't match in SSU rRNA database
2016-10-30 15:40:17,107 Checking organisms INFO: The organism: spo can't match in SSU rRNA database
2016-10-30 15:40:17,107 Checking organisms INFO: The organism: aga can't match in SSU rRNA database
2016-10-30 15:40:17,107 Checking organisms INFO: The organism: tru can't match in SSU rRNA database
2016-10-30 15:40:17,107 Checking organisms INFO: The organism: mpu can't match in SSU rRNA database
2016-10-30 15:40:17,107 Checking organisms INFO: The organism: lin can't match in SSU rRNA database
2016-10-30 15:40:17,107 Checking organisms INFO: The organism: ban can't match in SSU rRNA database
2016-10-30 15:40:17,107 Checking organisms INFO: The organism: bce can't match in SSU rRNA database
2016-10-30 15:40:17,108 Checking organisms INFO: The organism: ljo can't match in SSU rRNA database
2016-10-30 15:40:17,108 Checking organisms INFO: The organism: san can't match in SSU rRNA database
2016-10-30 15:40:17,108 Checking organisms INFO: The organism: spg can't match in SSU rRNA database
2016-10-30 15:40:17,108 Checking organisms INFO: The organism: ges can't match in SSU rRNA database
2016-10-30 15:40:17,108 Checking organisms INFO: The organism: lis can't match in SSU rRNA database
2016-10-30 15:40:17,108 Checking organisms INFO: The organism: sco can't match in SSU rRNA database
2016-10-30 15:40:17,108 Checking organisms INFO: The organism: cdi can't match in SSU rRNA database
2016-10-30 15:40:17,108 Checking organisms INFO: The organism: mle can't match in SSU rRNA database
2016-10-30 15:40:17,108 Checking organisms INFO: The organism: wsu can't match in SSU rRNA database
2016-10-30 15:40:17,108 Checking organisms INFO: The organism: rpr can't match in SSU rRNA database

2016-10-30 15:40:17,108 Checking organisms INFO: The organism: bpe can't match in SSU rRNA database

2016-10-30 15:40:17,108 Checking organisms INFO: The organism: bpa can't match in SSU rRNA database

2016-10-30 15:40:17,108 Checking organisms INFO: The organism: ppr can't match in SSU rRNA database

2016-10-30 15:40:17,108 Checking organisms WARNING: These species can't match in SSU rRNA database so removing and reconstructing phylogenetic tree.

2016-10-30 15:40:17,108 SSU rRNA DB INFO: Read organisms names success

2016-10-30 15:40:24,505 SSU rRNA DB INFO: Retrieve and download of organism 'pai' SSU rRNA sequence was successful

2016-10-30 15:40:26,960 SSU rRNA DB INFO: Retrieve and download of organism 'sto' SSU rRNA sequence was successful

2016-10-30 15:40:29,313 SSU rRNA DB INFO: Retrieve and download of organism 'ssoa' SSU rRNA sequence was successful

2016-10-30 15:40:32,387 SSU rRNA DB INFO: Retrieve and download of organism 'tvo' SSU rRNA sequence was successful

2016-10-30 15:40:35,158 SSU rRNA DB INFO: Retrieve and download of organism 'afu' SSU rRNA sequence was successful

2016-10-30 15:40:37,507 SSU rRNA DB INFO: Retrieve and download of organism 'hal' SSU rRNA sequence was successful

2016-10-30 15:40:41,282 SSU rRNA DB INFO: Retrieve and download of organism 'mac' SSU rRNA sequence was successful

......
3. Get the output tree

4. Annotate and view the tree

Use the `--labels` option to change abbreviated species names to full names:

```
 PhySpeTree iview -i 191speciesnames.txt --labels

Change abbreviation names to full names complete
change labels file was save in iview/labels.txt
```

```
 cd iview

 cat labels.txt
```
neq     Nanoarchaeum equitans
pai     Pyrobaculum aerophilum
ape     Aeropyrum pernix
sto     Sulfolobus tokodaii
ssoa    Sulfolobus solfataricus SULA
tvo     Thermoplasma volcanium
tac     Thermoplasma acidophilum
afu     Archaeoglobus fulgidus DSM 4304
hal     Halobacterium sp. NRC-1
mac     Methanosarcina acetivorans
mma     Methanosarcina mazei G01
pfu     Pyrococcus furiosus DSM 3638
pho     Pyrococcus horikoshii
pab     Pyrococcus abyssi
mth     Methanothermobacter thermautotrophicus
mka     Methanopyrus kandleri
mmp     Methanococcus maripaludis S2
Color branch ranges by phylum:

```
$ PhySpeTree iview -i 191speciesnames.txt -o iview --range --a phylum
Color range by phylum was complete.
Color range annotation was save in iview/range_color_by_phylum.txt

$ cd iview

$ cat range_color_by_phylum.txt

TREE_COLORS
SEPARATOR TAB
DATA
```
neq     range #996433 Archaea
pai     range #996433 Archaea
ape     range #996433 Archaea
sto     range #996433 Archaea
ssoa    range #996433 Archaea
tvo     range #996433 Archaea	tac     range #996433 Archaea
afu     range #996433 Archaea
hal     range #996433 Archaea
mac     range #996433 Archaea
mma     range #996433 Archaea
pfu     range #996433 Archaea
pho     range #996433 Archaea
pab     range #996433 Archaea
mth     range #996433 Archaea
mka     range #996433 Archaea
mmp     range #996433 Archaea
mja     range #996433 Archaea
.....
Color branch ranges by class:

$ PhySpeTree iview -i 191speciesnames.txt --range -a class

Color range by **class was complete.**

Color range annotation was save in `iview/range_color_by_class.txt`

$ cd iview

$ cat range_color_by_class.txt

```
TREE_COLORS
SEPARATOR TAB
DATA
```
neq     range  #4A959E Nanoarchaeota
pai     range  #58CD80 Crenarchaeota
ape     range  #58CD80 Crenarchaeota
sto     range  #58CD80 Crenarchaeota
ssoa    range  #58CD80 Crenarchaeota
tvo     range  #639BB0 Euryarchaeota
tac     range  #639BB0 Euryarchaeota
afu     range  #639BB0 Euryarchaeota
hal     range  #639BB0 Euryarchaeota
mac     range  #639BB0 Euryarchaeota
mma     range  #639BB0 Euryarchaeota
pfu     range  #639BB0 Euryarchaeota
pho     range  #639BB0 Euryarchaeota
pab     range  #639BB0 Euryarchaeota
mth     range  #639BB0 Euryarchaeota
mka     range  #639BB0 Euryarchaeota
mmp     range  #639BB0 Euryarchaeota
mja     range  #639BB0 Euryarchaeota
gla     range  #C5D49E Diplomonads
lma     range  #899DDB Euglenozoa
tps     range  #7DD2ED Stramenopiles
cho     range  #99A01A Alveolates
.....
Automatically reconstruct *Plantae* species tree

Here we use PhySpeTree to automatically reconstructed 52 plants species tree by the HCP method.

1. Prepare input species

```
$ wget "https://yangfangs.github.io/physpetools/example/52plantsnames.txt"
```

```
```

$ wget "https://yangfangs.github.io/physpetools/example/52plantsnames.txt"
2. Reconstruct the *Plantae* species tree

```bash
$ PhySpeTree autobuild -i 52plantsnames.txt -o 52plant_pro --hcp -t 6
```
Loading organisms names success.....

The result are store in: 52plant_pro

Now loading data and constructing phylogenetic tree......

2016-10-30 15:48:23,420 KEGG INDEX DB INFO: Read organisms names success

2016-10-30 15:48:36,020 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Leucyl-tRNA synthetase' was successful store in p1.fasta file

2016-10-30 15:48:42,369 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Metal-dependent proteases with chaperone activity' was successful store in p2.fasta file

2016-10-30 15:48:46,774 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Phenylalanine-tRNA synthetase alpha subunit' was successful store in p3.fasta file

2016-10-30 15:48:50,559 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Preprotein translocase subunit SecY' was successful store in p4.fasta file

2016-10-30 15:48:54,153 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Ribosomal protein L15' was successful store in p5.fasta file

2016-10-30 15:48:57,631 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Ribosomal protein L16/L10E' was successful store in p6.fasta file

2016-10-30 15:49:01,311 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Ribosomal protein L18' was successful store in p7.fasta file

2016-10-30 15:49:09,038 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Ribosomal protein L22' was successful store in p8.fasta file

2016-10-30 15:49:18,417 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Ribosomal protein L3' was successful store in p9.fasta file

2016-10-30 15:49:24,771 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Ribosomal protein L5' was successful store in p10.fasta file

2016-10-30 15:49:31,840 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Ribosomal protein L6P/L9E' was successful store in p11.fasta file

2016-10-30 15:49:36,652 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Ribosomal protein S11' was successful store in p12.fasta file


2016-10-30 15:49:51,186 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Ribosomal protein S2' was successful store in p15.fasta file.

2016-10-30 15:50:04,278 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Ribosomal protein S8' was successful store in p16.fasta file.

2016-10-30 15:50:13,914 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Seryl-tRNA synthetase' was successful store in p17.fasta file.

2016-10-30 15:50:19,753 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Ribosomal protein S13' was successful store in p18.fasta file.

2016-10-30 15:50:19,753 KEGG INDEX DB INFO: Retrieve from KEGG database 18 highly conserved proteins.

......
3. Get the output tree

Use the \texttt{--labels} option to change abbreviated species names to full names:

\begin{verbatim}
$ PhySpeTree iview -i 52plantsnames.txt --labels
Change abbreviation names to full names complete
change labels file was save in iview/labels.txt
$ cd iview
$ cat labels.txt
\end{verbatim}
<table>
<thead>
<tr>
<th>LABELS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SEPARATOR</td>
<td>TAB</td>
</tr>
<tr>
<td>DATA</td>
<td></td>
</tr>
<tr>
<td>aly</td>
<td>Arabidopsis lyrata (lyrate rockcress)</td>
</tr>
<tr>
<td>ath</td>
<td>Arabidopsis thaliana (thale cress)</td>
</tr>
<tr>
<td>atr</td>
<td>Amborella trichopoda</td>
</tr>
<tr>
<td>bdi</td>
<td>Brachypodium distachyon</td>
</tr>
<tr>
<td>bpg</td>
<td>Bathycoccus prasinos</td>
</tr>
<tr>
<td>brp</td>
<td>Brassica rapa (field mustard)</td>
</tr>
<tr>
<td>bvg</td>
<td>Beta vulgaris (sugar beet)</td>
</tr>
<tr>
<td>cam</td>
<td>Cicer arietinum (chickpea)</td>
</tr>
<tr>
<td>ccp</td>
<td>Chondrus crispus (carragheen)</td>
</tr>
<tr>
<td>cic</td>
<td>Citrus clementina (mandarin orange)</td>
</tr>
<tr>
<td>cit</td>
<td>Citrus sinensis (Valencia orange)</td>
</tr>
<tr>
<td>cme</td>
<td>Cyanidioschyzon merolae</td>
</tr>
<tr>
<td>cmo</td>
<td>Cucumis melo (muskmelon)</td>
</tr>
<tr>
<td>crb</td>
<td>Capsella rubella</td>
</tr>
<tr>
<td>cre</td>
<td>Chlamydomonas reinhardtii</td>
</tr>
<tr>
<td>csl</td>
<td>Coccomyxa subellipsoidea</td>
</tr>
<tr>
<td>csv</td>
<td>Cucumis sativus (cucumber)</td>
</tr>
<tr>
<td>cvr</td>
<td>Chlorella variabilis</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Color branch ranges by class:

```
$ PhySpeTree .iview -i 52plantsnames.txt -o .iview --range -a phylum

Color range by **class was complete.**

Color range annotation was save in **iview/range_color_by_class.txt**

$ cd iview

$ cat range_color_by_class.txt

```

```
TREE_COLORS
SEPARATOR TAB
DATA
```
aly range #1C748D Eudicots
ath range #1C748D Eudicots
atr range #C4DE94 Basal Magnoliophyta
bdi range #854B9F Monocots
bpg range #784CE5 Green algae
brp range #1C748D Eudicots
bvg range #1C748D Eudicots
cam range #1C748D Eudicots
ccp range #CEDDB3 Red algae
cic range #1C748D Eudicots
cit range #1C748D Eudicots
cme range #CEDDB3 Red algae
cmo range #1C748D Eudicots
crb range #1C748D Eudicots
cre range #784CE5 Green algae
csl range #784CE5 Green algae
.....
Extend species tree with new organisms

Here we show how to use PhySpeTree to expand insert a pre-built species tree with new organisms. We insert the newly identified organism *Lokiarchaeum sp. GC14_75* (loki) to the tree-of-life.

Extend species tree by the SSU rRNA method

Concept
1. Manually prepare the SSU rRNA sequence

We prepare the SSU rRNA sequence of loki and save it in a FASTA format file, for example `extend_rna_loki.fasta`.

Download the example file:

```
$ wget "https://yangfangs.github.io/physpetools/example/extend_rna_loki.fasta"
```

```
Resolving yangfangs.github.io (yangfangs.github.io)... 151.101.24.133
Connecting to yangfangs.github.io (yangfangs.github.io)|151.101.24.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 1200 (1.2K) [application/octet-stream]
Saving to: 'extend_rna_loki.fasta'
extend_rna_loki.fasta 100%[===] 1.17K --.-KB/s in 0s
```
check:

```bash
$ cat extend_rna_olki.fasta
>loki
GAGAUGGGUACAGACAAAGCAGCCCGCUUACGAGCGGCGCGAAACCUCGGCAUACACGAAAGUGUGACG
GGGUUACCGUGAAUUAACCAUAAUAGCGUGUUCCUAAGUGACUUGGGUACGAGACGGAGGACGGUGU
CACAGCCGCGCGUAACACCAGCUUCAGUGGUGCGGAAUAAUUAACAGCGUUAAGUGGGCUUUAAAGAC
UACGUACCAAGGCACAGGGGAGCGAACCCCGGUAGUACCCCGCGCCGUAAACGAUACUCUGAAUAGG
UGAAUUGGCGGGGGAGCACCACAAGGGGUGAAGCCUGCGGUUCAAUUGGACUCAACGCCGGGAACU
UCCAGCAGCAGAAUGAUGGUCAGGUUGACGACCUAACCUGACAGCUGAGAGGAGGUGCAUGGCCGUCG
GCCAGUUCGUGCUAAAGUCAGGCAACGAACGAGAUCCGCACCUUUUAUUUGCCAGCAAGAAGUCACG
AUUCGUUGGGGAAGAAGUCGUAACAAGGUAGCCGUAGGGGAACCUGCGGCUGGAUCACCUCCU
```
2. Insert loki to the tree-of-life

Update the tree-of-life by combining the **--esrna** and **-e** options.

```
$ PhySpeTree autobuild -i 191speciesnames.txt -o extend_rna -e extend_rna_loki.fasta --esrna -t 6
```

Loading organisms names success....

The result are store in: extend_rna

Now loading data and constructing phylogenetic tree......

```
2016-10-30 16:10:01,551 Checking organisms INFO: The organism: neq can't match in SSU rRNA database
2016-10-30 16:10:01,551 Checking organisms INFO: The organism: ape can't match in SSU rRNA database
2016-10-30 16:10:01,551 Checking organisms INFO: The organism: tac can't match in SSU rRNA database
2016-10-30 16:10:01,551 Checking organisms INFO: The organism: mmp can't match in SSU rRNA database
2016-10-30 16:10:01,551 Checking organisms INFO: The organism: gla can't match in SSU rRNA database
2016-10-30 16:10:01,551 Checking organisms INFO: The organism: tps can't match in SSU rRNA database
2016-10-30 16:10:01,551 Checking organisms INFO: The organism: cho can't match in SSU rRNA database
2016-10-30 16:10:01,551 Checking organisms INFO: The organism: ddi can't match in SSU rRNA database
2016-10-30 16:10:01,551 Checking organisms INFO: The organism: spo can't match in SSU rRNA database
2016-10-30 16:10:01,552 Checking organisms INFO: The organism: aga can't match in SSU rRNA database
2016-10-30 16:10:01,552 Checking organisms INFO: The organism: tru can't match in SSU rRNA database
```
2016-10-30 16:10:01,552 Checking organisms INFO: The organism: mpu can't match in SSU rRNA database

2016-10-30 16:10:01,552 Checking organisms INFO: The organism: lin can't match in SSU rRNA database

2016-10-30 16:10:01,552 Checking organisms INFO: The organism: ban can't match in SSU rRNA database

2016-10-30 16:10:01,552 Checking organisms INFO: The organism: bce can't match in SSU rRNA database

2016-10-30 16:10:01,552 Checking organisms INFO: The organism: ljo can't match in SSU rRNA database

2016-10-30 16:10:01,552 Checking organisms INFO: The organism: san can't match in SSU rRNA database

2016-10-30 16:10:01,552 Checking organisms INFO: The organism: spg can't match in SSU rRNA database

2016-10-30 16:10:01,552 Checking organisms INFO: The organism: ges can't match in SSU rRNA database

2016-10-30 16:10:01,552 Checking organisms INFO: The organism: lis can't match in SSU rRNA database

2016-10-30 16:10:01,552 Checking organisms INFO: The organism: sco can't match in SSU rRNA database

2016-10-30 16:10:01,552 Checking organisms INFO: The organism: cdi can't match in SSU rRNA database

2016-10-30 16:10:01,552 Checking organisms INFO: The organism: mle can't match in SSU rRNA database

2016-10-30 16:10:01,552 Checking organisms INFO: The organism: wsu can't match in SSU rRNA database

2016-10-30 16:10:01,552 Checking organisms INFO: The organism: rpr can't match in SSU rRNA database

2016-10-30 16:10:01,552 Checking organisms INFO: The organism: bpe can't match in SSU rRNA database

2016-10-30 16:10:01,552 Checking organisms INFO: The organism: bpa can't match in SSU rRNA database

2016-10-30 16:10:01,552 Checking organisms INFO: The organism: ppr can't match in SSU rRNA database

2016-10-30 16:10:01,552 Checking organisms WARNING: These species can't match in SSU rRNA database so removing and reconstructing phylogenetic tree.
2016-10-30 16:10:01,552 SSU rRNA DB INFO: Read organisms names success

2016-10-30 16:10:02,263 SSU rRNA DB INFO: Retrieve and download of organism 'pai' SSU rRNA sequence was successful

2016-10-30 16:10:02,468 SSU rRNA DB INFO: Retrieve and download of organism 'sto' SSU rRNA sequence was successful

2016-10-30 16:10:02,672 SSU rRNA DB INFO: Retrieve and download of organism 'soa' SSU rRNA sequence was successful

2016-10-30 16:10:02,878 SSU rRNA DB INFO: Retrieve and download of organism 'to' SSU rRNA sequence was successful

2016-10-30 16:10:04,408 SSU rRNA DB INFO: Retrieve and download of organism 'afu' SSU rRNA sequence was successful

2016-10-30 16:10:04,615 SSU rRNA DB INFO: Retrieve and download of organism 'hal' SSU rRNA sequence was successful

2016-10-30 16:10:05,085 SSU rRNA DB INFO: Retrieve and download of organism 'mac' SSU rRNA sequence was successful

2016-10-30 16:10:05,638 SSU rRNA DB INFO: Retrieve and download of organism 'ma' SSU rRNA sequence was successful

2016-10-30 16:10:05,841 SSU rRNA DB INFO: Retrieve and download of organism 'pfu' SSU rRNA sequence was successful

2016-10-30 16:10:06,086 SSU rRNA DB INFO: Retrieve and download of organism 'pbo' SSU rRNA sequence was successful

2016-10-30 16:10:06,590 SSU rRNA DB INFO: Retrieve and download of organism 'pab' SSU rRNA sequence was successful

2016-10-30 16:10:07,100 SSU rRNA DB INFO: Retrieve and download of organism 'th' SSU rRNA sequence was successful

2016-10-30 16:10:07,303 SSU rRNA DB INFO: Retrieve and download of organism 'mka' SSU rRNA sequence was successful

.....
3. Annotate and view the tree

Extend species tree by the HCP method

- Concept

1. Identify classes of HCP

Use the `check` module to identify what classes of HCP should be prepared.

```
$ PhySpeTree check -i 191speciesnames.txt --ehcp

'Ribosomal protein L1' ----------------------------------> pl.fasta
```
2. Manually prepare HCP sequences

According to check results, we prepare 6 classes of HCP and store the sequences (p1 ~ p6) into FASTA format files, for example highly_conserved_protein_loki.tar.gz

Download the example file:

```
$ wget "https://yangfangs.github.io/phypetools/example/highly_conserved_protein_loki.tar.gz"
```

```
Resolving yangfangs.github.io (yangfangs.github.io)... 151.101.48.133
Connecting to yangfangs.github.io (yangfangs.github.io)|151.101.48.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 1810 (1.8K) [application/octet-stream]
Saving to: 'highly_conserved_protein_loki.tar.gz'
```
highly_conserved_protein_loki 100%[===========================================
===>] 1.77K --.-KB/s in 0s

2016-10-30 16:36:50 (623 MB/s) - ‘highly_conserved_protein_loki.tar.gz’ saved
[1810/1810]

$ tar -zxvf highly_conserved_protein_loki.tar.gz

highly_conserved_protein_loki/
highly_conserved_protein_loki/p1.fasta
highly_conserved_protein_loki/p2.fasta
highly_conserved_protein_loki/p3.fasta
highly_conserved_protein_loki/p4.fasta
highly_conserved_protein_loki/p5.fasta
highly_conserved_protein_loki/p6.fasta

$ cd extend_pro_loki
$ ls

$ cat p1.fasta
>loki
MKVDDNLLQSLNAAIDFSVRREKFDRKFRKDETIDLIINIKDVNLDPPKNRIDKEII
LTNEIVEEEKLNICVIASEILAEKKAAGVETLDRALIKLNNEEKKHKKFKAKYEFFI
VEDKMMRDVARYLARFLGPLRMKPPFTGYGIISPSGDLRTAVERYKKVIRIOMKKQPI
IFAKIGKSMKSMERLDFDNMTVIDFIADQMPHKFNNFKSMYKSMGKPKVTEEFKSL
EV

3. Insert loki to the tree-of-life

$ PhySpeTree autobuild -i 191speciesnames.txt -o extend_pro_loki -e highly_conserved_protein_loki --ehcp -t 6
Loading organisms names success.....
The result are store in: extend_pro_loki

Now loading data and constructing phylogenetic tree......

2016-10-30 18:19:53,951 Checking organisms INFO: The species: ges can't match in KEGG protein index database

2016-10-30 18:19:53,951 Checking organisms WARNING: These species can't match in KEGG protein index database so removed and reconstruct phylogenetic tree.

2016-10-30 18:19:53,951 KEGG INDEX DB INFO: Read organisms names success

2016-10-30 18:20:18,870 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Ribosomal protein L1' was successful store in p1.fasta file

2016-10-30 18:20:46,573 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Leucyl-tRNA synthetase' was successful store in p2.fasta file

2016-10-30 18:21:11,401 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Ribosomal protein L14' was successful store in p3.fasta file

2016-10-30 18:21:36,078 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Ribosomal protein L5' was successful store in p4.fasta file

2016-10-30 18:22:00,454 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Ribosomal protein S7' was successful store in p5.fasta file

2016-10-30 18:22:27,895 KEGG INDEX DB INFO: Retrieve from KEGG database 6 highly conserved proteins

......
4. Annotate and view the tree

Run PhySpeTree in other operating systems

1. Install the Docker in your operating system

   - If you want to use PhySpeTree on other platforms, above all need to install docker on the appropriate platform.
   - For Windows OS, you can install Docker for Windows.
   - For Mac OS, you can install Docker for Mac.

2. Pull the PhySpeTree image

   $ docker pull yangfangs/physpetree:v0.3.4

   [yangfang@localhost ~]$ docker pull yangfangs/physpetree:v0.3.4

   v0.3.4: Pulling from yangfangs/physpetree

   Digest: sha256:2ef685db22bd18ae0595884bfd6ba7409b15fbb67c579e1817ac007cc46cfe

   Status: Downloaded newer image for yangfangs/physpetree:v0.3.4
3. check PhySpeTree image

```bash
[yangfang@localhost ~]$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZES
yangfangs/physpetree v0.3.4 ebcda7f797c 41 hours ago
683MB
```

4. run PhySpeTree image

- You need to run docker with an interactive bash and mount it in a local directory with a working directory in docker (PhySpeTree_work_dir).

```bash
[yangfang@localhost ~]$ docker run -it -v /home/yangfang/work_dir/:/PhySpeTree_work_dir yangfangs/physpetree:v0.3.4 bash
root@2d68776ac9ad:/PhySpeTree_work_dir#
```

5. Run PhySpeTree in Docker

- Download test file

```bash
root@2d68776ac9ad:/PhySpeTree_work_dir# wget "https://yangfangs.github.io/physpetools/example/organism_example_list.txt"
--2018-11-21 02:28:28-- https://yangfangs.github.io/physpetools/example/organism_example_list.txt
Resolving yangfangs.github.io (yangfangs.github.io)... 185.199.108.153, 185.199.109.153, 185.199.111.153, ...
Connecting to yangfangs.github.io (yangfangs.github.io)|185.199.108.153|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 39 [text/plain]
Saving to: 'organism_example_list.txt'
organism_example_list.txt 100%[==]==>
-- 0s
```

```bash
organism_example_list.txt 100%[==]==>
-- 0s
```
run PhySpeTree

```
root@2d68776ac9ad:/PhySpeTree_work_dir# PhySpeTree autobuild -i organism_example_list.txt --hcp

Loading organism's names success.....

The result are store in:Outdata

Now loading data and constructing phylogenetic tree.....
```

2018-11-21 02:30:29,336 KEGG INDEX DB INFO: Read organisms names success

2018-11-21 02:30:30,652 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Ribosomal protein L1' was successful store in p1.fasta file

2018-11-21 02:30:31,440 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'DNA-directed RNA polymerase subunit alpha' was successful store in p2.fasta file

2018-11-21 02:30:32,260 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Leucyl-tRNA synthetase' was successful store in p3.fasta file

2018-11-21 02:30:33,078 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Metal-dependent proteases with chaperone activity' was successful store in p4.fasta file

2018-11-21 02:30:33,896 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Phenylalanine-tRNA synthetase alpha subunit' was successful store in p5.fasta file

2018-11-21 02:30:35,739 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Predicted GTPase probable translation factor' was successful store in p6.fasta file

2018-11-21 02:30:36,222 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Ribosomal protein L11' was successful store in p7.fasta file

2018-11-21 02:30:36,866 KEGG INDEX DB INFO: Retrieve and download of highly conserved protein 'Ribosomal protein L13'

.....
- All output result are in local directory, named `work_dir`

```bash
[yangfang@localhost ~]$ cd work_dir/
[yangfang@localhost work_dir]$ ls
log.log organism_example_list.txt Outdata temp
```