Figure 1: False negatives (in blue) and positives (in red), as a function of some values of the true squared Euclidean distance d. Balanced case of two gene lists of size 200 with 20 genes in common. Equivalence limit set at $\Delta = 0.25$. The null hypothesis of the equivalence test states that the true squared Euclidean distance, d, is greater than or equal to Δ, that is to say, that both lists are sufficiently dissimilar according to the Δ limit criterion. Thus, rejecting this hypothesis corresponds to declaring equivalence. When the true simulated distance is $d < \Delta$, not rejecting the null hypothesis (not declaring equivalence) corresponds to a false negative. Its probability is computed as $1 - Pr\{\text{Reject}H_0\}$. When $d \geq \Delta$, declaring equivalence is a false positive. Its probability is directly $Pr\{\text{Reject}H_0\}$.

$\Delta = 0.25$
Figure 2: False negatives (in blue) and positives (in red), at different scenarios as a function of the true squared Euclidean distance. Balanced case of two gene lists of size 1000 with 100 genes in common. Equivalence limit at $\Delta = 0.25$. The null hypothesis of the equivalence test states that the true squared Euclidean distance, d, is greater than or equal to Δ, that is to say, that both lists are sufficiently dissimilar according to the Δ limit criterion. Thus, rejecting this hypothesis corresponds to declaring equivalence. When the true simulated distance is $d < \Delta$, not rejecting the null hypothesis (not declaring equivalence) corresponds to a false negative. Its probability is computed as $1 - \Pr\{\text{Reject}H_0\}$. When $d \geq \Delta$, declaring equivalence is a false positive. Its probability is directly $\Pr\{\text{Reject}H_0\}$.

$\Delta = 0.25$
Figure 3: False negatives (in blue) and positives (in red), at different scenarios as a function of the true squared Euclidean distance. Balanced case of two gene lists of size 200 with 20 genes in common. Equivalence limit at $\Delta = 0.025$. The null hypothesis of the equivalence test states that the true squared Euclidean distance, d, is greater than or equal to Δ, that is to say, that both lists are sufficiently dissimilar according to the Δ limit criterion. Thus, rejecting this hypothesis corresponds to declaring equivalence. When the true simulated distance is $d < \Delta$, not rejecting the null hypothesis (not declaring equivalence) corresponds to a false negative. Its probability is computed as $1 - \Pr\{\text{Reject}H_0\}$. When $d \geq \Delta$, declaring equivalence is a false positive. Its probability is directly $\Pr\{\text{Reject}H_0\}$.

$\Delta = 0.025$

- $d = 0.005$
- $d = 0.01$
- $d = 0.015$
- $d = 0.02$
- $d = 0.025$
- $d = 0.03$
- $d = 0.035$

$n = m = 200, n_0 = 20$

$\alpha = 0.05$