Welcome to repLIS - Replicability analysis in genome-wide association studies via Cartesian hidden Markov models

Pengfei Wang, and Wensheng Zhu*

August 21, 2018

Description

repLIS is a program to perform replicability analysis in genome-wide association studies, which is written in R code. Here, repLIS program is designed for one chromosome or a segment of chromosome. For the analysis of multiple chromosomes, firstly, the users can make the parallel computing for them, then complete the global analysis by combining all results from multiple chromosomes.

Citations

Downloads

- Some core code of repLIS procedure are available on GitHub (https://github.com/wpf19890429/large-scale-multiple-testing-via-CHMM). This repository contains the following files:
 rdata.hmm.Cartesian.R
 bwfw.hmm.Cartesian.R
 em.hmm.Cartesian.R
 bwfw.hmm3.Cartesian.R
 em.hmm3.Cartesian.R
 mt.hmm.R.txt
illustrations of core R functions

1. rdata.hmm.Cartesian
Description:
Generating the observed z-values and the states of hypotheses that are based on Cartesian hidden Markov models.
Usage:
 rdata.hmm.Cartesian(NUM, pii, A, f0, f1, f2)
Arguments:
 NUM: sample size
 pii=(pii[1], pii[2], pii[3], pii[4]): initial state distribution
 A: transition matrix
 f0: parameter set for the null distribution
 f1: parameter set of the non-null distribution for study 1
 f2: parameter set of the non-null distribution for study 2
Values:
 x1: continuous observed z-values from study 1
 x2: continuous observed z-values from study 2
 theta: four-state unobserved states of hypotheses

2. bwfw.hmm.Cartesian
Description:
Calculating the repLIS multiple testing statistics via the backward-forward algorithm.
Usage:
 bwfw.hmm.Cartesian(x1, x2, pii, A, f0, f1, f2)
Arguments:
 x1: continuous observed z-values from study 1
 x2: continuous observed z-values from study 2
 pii=(pii[1], pii[2], pii[3], pii[4]): initial state distribution
 A: transition matrix
 f0: parameter set of the null distribution
 f1: parameter set of the non-null distribution for study 1
f2: parameter set of the non-null distribution for study 2

Values:

alpha: rescaled backward variables
beta: rescaled forward variables
lfdr: repLIS multiple testing statistics

3. em.hmm.Cartesian
Description:
Calculating the parameters of Cartesian hidden Markov models via the EM algorithm.
Usage:
em.hmm.Cartesian(x1, x2, maxiter=200)
Arguments:
x1: continuous observed z-values from study 1
x2: continuous observed z-values from study 2
maxiter: the maximum number of iterations
Values:
p1.new: the estimation of initial state distribution
A.new: the estimation of transition matrix
f1.new: the estimation of parameter set for the non-null distribution for study 1
f2.new: the estimation of parameter set for the non-null distribution for study 2
niter: the number of iterations

4. bwfw.hmm3.Cartesian
Description:
Calculating the repLIS multiple testing statistics for multiple (=3) GWAS studies via the
backward-forward algorithm.
Usage:
bwfw.hmm3.Cartesian(x1, x2, x3, pii, A, f0, f1, f2, f3)

Arguments:
- x1: continuous observed z-values from study 1
- x2: continuous observed z-values from study 2
- x3: continuous observed z-values from study 3
- pii=(pii[1], pii[2], pii[3], pii[4], pii[5], pii[6], pii[7], pii[8]): initial state distribution
- A: transition matrix
- f0: parameter set of the null distribution
- f1: parameter set of the non-null distribution for study 1
- f2: parameter set of the non-null distribution for study 2
- f3: parameter set of the non-null distribution for study 3

Values:
- alpha: rescaled backward variables
- beta: rescaled forward variables
- lfdr: repLIS multiple testing statistics

5. em.hmm3.Cartesian

Description:
Calculating the parameters of Cartesian hidden Markov models for multiple (=3) GWAS studies via the EM algorithm.

Usage:
em.hmm3.Cartesian(x1, x2, x3, maxiter=200)

Arguments:
- x1: continuous observed z-values from study 1
- x2: continuous observed z-values from study 2
- x3: continuous observed z-values from study 3
- maxiter: the maximum number of iterations

Values:
- pii.new: the estimation of initial state distribution
A.new: the estimation of transition matrix
f1.new: the estimation of parameter set for the non-null distribution for study 1
f2.new: the estimation of parameter set for the non-null distribution for study 2
f3.new: the estimation of parameter set for the non-null distribution for study 3
niter: the number of iterations

6. mt.hmm
Description:
Conducting repLIS procedure when a pre-specified nominal level is given.
Usage:
mt.hmm(repLIS, q)
Arguments:
repLIS: repLIS multiple testing statistics
q: the pre-specified nominal level
Values:
nr: the number of rejected hypotheses
th: the threshold
re: the rejected hypotheses
ac: the accepted hypotheses
de: the decision rule
Examples:

the number of observed z-values
source("rdata.hmm.Cartesian.R")
NUM<-10000
initialize the transition matrix
A<-matrix(c(c(0.7, 0.1, 0.1, 0.1),
 c(0.1, 0.7, 0.1, 0.1),
 c(0.1, 0.1, 0.7, 0.1),
 c(0.1, 0.1, 0.1, 0.7)), 4, 4, byrow=TRUE)

initialize parameter set of the null and non-null distributions
f0<-c(0, 1)
f1<-c(1, 1)
f2<-c(3, 1)

initialize state distribution
pii<-c(0.25, 0.25, 0.25, 0.25)

Generating the observed z-values and the states of hypotheses that are based on
Cartesian hidden Markov models.
rdata<-rdata.hmm.Cartesian(NUM, pii, A, f0, f1, f2)
x1<-rdata$x1
x2<-rdata$x2
theta<-rdata$s

The input file consists of the above generated z-values
Simulation_data<-read.table("input_data.csv",header=TRUE,sep="","

x1<- Simulation_data[, 2]
x2<- Simulation_data[, 3]
theta<- Simulation_data[, 4]
Calculating the repLIS multiple testing statistics via the backward-forward algorithm.
source("rdata.hmm.Cartesian.R")
source("bwfw.hmm.Cartesian.R")

bwfw.res<-bwfw.hmm.Cartesian(x1, x2, pii, A, f0, f1, f2)
repLIS<-bwfw.res$lsi

Conducting repLIS procedure given the pre-specified level is 0.1.
res.repLIS<-mt.hmm(repLIS,0.1)$de
res.theta<-rep(0, 10000)
res.theta[theta==4]<-1
N10<-length(which(res.repLIS-res.theta>0))
R<-length(which(res.repLIS==1))+0.0001
FDR<-N10/R

The output file consists of the simulation results of the replicated signals (=1)
output<- res.theta
colname<- " res.theta "
colnames(output)<-colname
file_name<-paste("Result",".csv",sep="")
write.csv(output, file=file_name)

In real data analysis, the parameters of Cartesian hidden Markov models are unknown.
Firstly, we need to conduct the EM algorithm for estimating the parameters of CHMM.
x1: continuous observed z-values from study 1
x2: continuous observed z-values from study 2
em<-em.hmm.Cartesian(x1, x2, 100)
em.res<-bwfw.hmm.Cartesian(x1, x2, empii, emA, f0, em$f1, em$f2)