conNormalizer

Normalizing a target data array to a basis array based on their distributions

Description
Normalizing a target data array to a basis array based on their distributions

Usage
conNormalizer(tg, bs)

Arguments

tg a target data array
bs a basis data array
Details

The function maps a target data array to a basis array based on their distributions and the basis data array can be an arbitrary data array or a standard distribution such as normal distribution.

Value

A normalized target data array with the same distribution with the basis data array

Author(s)

Qinxue Meng, Paul Kennedy

Examples

Normalize DArray1 to DArray3
load build-in data arrays
data(DArray1)
data(DArray3)

Capturing distribution information
DBdata1 <- genDistData(DArray1, 500)
DBdata3 <- genDistData(DArray3, 500)

Using Gaussian function to fit DBdata3
DBdata3 <- gaussianFit(DBdata3)

Normalize DBdata1 to the Gaussian fitting function of DBdata3
DAArray1 = conNormalizer(DArray1, DArray3)
DAArray3DBdata <- genDistData(DAArray3DBdata, 500)
visDistData(DAArray3DBdata, "P", "DAArray3", "Range", "Probability")

custFit

fitting a distribution by a customised curve function

Description

fitting a distribution by a customised curve function

Usage

custFit(DBdata, formula)

Arguments

DBdata
input distribution dataset

formula
a customised curve function

Details

The function fits distributions by a customised curve fitting and returns a customised curve fitting function.
defineDist

Value

a customised curve fitting function

Author(s)

Qinxue Meng, Paul Kennedy

See Also

lm

Examples

```r
# Calculating the customised curve fitting function of DArray1's distribution
DBdata1 = custFit(DBdata1)
```

defineDist

Generating distribution data based on predefined distribution

Description

Generating distribution data based on predefined distribution

Usage

```r
defineDist(dist)
```

Arguments

- `dist`: a predefined distribution
- `min`: the lower bound of data range and default value is 0
- `max`: the upper bound of data range and default value is 1

Details

This function generates distribution data based on predefined distribution. The purpose of this function is to enable to normalize arbitrary distributions into a standard distribution.

Value

a distribution dataset of the input predefined distribution

Author(s)

Qinxue Meng, Paul Kennedy

See Also

list()
Examples

```r
# generate distribution data of a normal distribution
DArray5 <- defineDist(Norm(mean=0, sd=1))
```

Description

Normalizing a target data array to a basis array based on element positions

Usage

```r
disNormalizer(tg, bs)
```

Arguments

- **tg**: a target data array
- **bs**: a basis data array

Details

The function normalize target data array to a basis array based on element positions. This method does not need to do fitting before normalization and works for discrete values as well.

Value

A normalized target data array with the same distribution with the basis data array

Author(s)

Qinxue Meng, Paul Kennedy

Examples

```r
# Calculating the polynomial curve fitting function of DArray1's distribution
DArray1 = disNormalizer(DArray1, DArray3)
```
distrNormalizer

Normalizing a target data array to a standard distribution

Description
Normalizing a target data array to a standard distribution

Usage
distrNormalizer(tg, bs)

Arguments
- tg: a target data array
- bs: a standard distribution created by defineDist(dist)

Details
The function normalize target data array to a standard distribution.

Value
A normalized target data array with the same distribution with the standard distribution

Author(s)
Qinxue Meng, Paul Kennedy

Examples
```r
# Normalize a given data array into a normal distribution
loadData(0)
DBdata1 <- genDistData(DArray1, 500)
DBdata5 <- defineDist(Norm(mean=0, sd=1))
DA1toDA5 <- distrNormalizer(DBdata1, DBdata5)
DA1toDA5DBdata <- genDistData(DA1toDA5, 500)
visDistData(DA1toDA5DBdata, "P", "DA1toDA5", "Range", "Probability")
```

fourierFit
fitting a distribution by fourier curve fitting

Description
fitting a distribution by fourier curve fitting

Usage
fourierFit(DBdata, n)
gaussianFit

Arguments

- **DBdata**: input distribution dataset
- **n**: the degree of the fourier fitting function

Details

The function fits distributions by fourier curve fitting and returns a fourier curve fitting function.

Value

a fourier curve fitting function

Author(s)

Qinxue Meng, Paul Kennedy

See Also

lm

Examples

```r
# Calculating the fourier curve fitting function of DArray1's distribution
DBdata1 = fourierFit(DBdata1, 3)
```
genDistData

Description
Generating distribution dataset based on input data arrays.

Usage
```
genDistData(data, nbin)
```

Arguments
- **data**: input data array
- **nbin**: number of bins

Details
This function generates distribution dataset based on input data arrays for downstream analysis.

Value
a distribution dataset of a given input data array

Author(s)
Qinxue Meng, Paul Kennedy

See Also
- `list()`

Examples
```
# Calculating the gaussian curve fitting function of DArray1's distribution
DBdata1 = gaussianFit(DBdata1)

# load DArray1
DData1 <- genDistData(DArray1, 500)
```
Description

This function loads build-in data array for examples

Usage

loadData(n)

Arguments

n n-th data array to load; if n = 1, DArray1 is loaded; if n = 2, DArray2 is loaded; if n = 3, DArray3 is loaded; if n = 4, DArray4 is loaded; if n is not 1, 2, 3, 4, all four data arrays are loaded.

Details

This function loads example data arrays for user to test

Value

None

Author(s)

Qinxue Meng

See Also

data()
polyFit

fitting a distribution by polynomial curve fitting

Description

fitting a distribution by polynomial curve fitting

Usage

```r
polyFit(DBdata, n)
```

Arguments

- `DBdata`: input distribution dataset
- `n`: the degree of polynomial functions

Details

The function fits distributions by polynomial curve fitting and returns a polynomial curve fitting function.

Value

a polynomial curve fitting function

Author(s)

Qinxue Meng, Paul Kennedy

See Also

`lm`

Examples

```r
# Calculating the polynomial curve fitting function of DArray1's distribution
DBdata1 = polyFit(DBdata1, 3)
```

visDistData

Visualising distribution dataset

Description

Visualising distribution dataset

Usage

```r
visDistData(DBdata, type, t, xl, yl)
```
Arguments

DBdata a distribution dataset
type plot by frequency / probability
t title of plot
xl description of x-axis
yl description of y-axis

Details

This function generates distribution data based on predefined distribution. The purpose of this function is to enable to normalize arbitrary distributions into a standard distribution.

Author(s)

Qinxue Meng, Paul Kennedy

Examples

visualising a distribution data
DBdata1 <- genDistData(DArray1, 500)
visDistData(DBdata1, "F", "DArray1", "Range", "Frequence")
visDistData(DBdata1, "P", "DArray1", "Range", "Probability")
Examples

visualising fitting results on DArray1's distribution
visFitting(DBdata1, "DArray1", "Range", "Probability")
Index

conNormalizer, 1
custFit, 2
defineDist, 3
disNormalizer, 4
distrNormalizer, 5
fourierFit, 5
gaussianFit, 6
genDistData, 7
loadData, 8
polyFit, 9
visDistData, 9
visFitting, 10