ISNCA formulation for shared TFs and TGs

The current proposed algorithm, the iterative sub-network component analysis (ISNCA) is extended easily to solve the NCA compliant sub-networks that share common TFs and TGs. In order to apply the ISNCA algorithm, we first divide the network into two compliant sub-networks. The expression and connectivity matrices for each sub-network can be represented by

\[
E_1 = \begin{bmatrix} E_{u1} \\ E_c \end{bmatrix}, \quad E_2 = \begin{bmatrix} E_{u2} \\ E_c \end{bmatrix}
\]

and

\[
A_1 = \begin{bmatrix} A_{uu1} & A_{uc1} \\ A_{cu1} & A_{cc} \end{bmatrix}, \quad A_2 = \begin{bmatrix} A_{ccc} & A_{cu2} \\ A_{uc2} & A_{uu2} \end{bmatrix}
\]

with \(E_{ui} \in \mathbb{R}^{nuixm}\) and \(E_c \in \mathbb{R}^{ncxm}\) denote the expression matrices of sub-networks \(i = 1, 2\). \(A_{ui} \in \mathbb{R}^{nuixlui}\), \(A_{cu} \in \mathbb{R}^{ncxlc}\), and \(A_{cc} \in \mathbb{R}^{ncxlc}\) are the partition matrices of \(A\), of sub network \(i = 1, 2\), the subscript indices \(u, c\) denotes the unique and common components of the sub networks. The first, second and third subscript indices of any partition matrices denote TGs, TFs and sub-networks respectively. In all the following, when we write \(A_i\), \(E_i\) or \(P_i\), we refer to matrices of the entire sub-network \(i\), including both its exclusive and common components.

The entire network can be described in the following manner:

\[
A = \begin{bmatrix} A_{uu1} & A_{uc1} & \mathbf{O}_2 \\ A_{cu1} & A_{cc} & A_{cu2} \\ \mathbf{O}_1 & A_{uc2} & A_{uu2} \end{bmatrix}
\]

The matrices \(\mathbf{O}_1 \in \mathbb{R}^{nu2\times l_u1}\) and \(\mathbf{O}_2 \in \mathbb{R}^{nu1\times l_u2}\) denote zero matrices. The corresponding partitions of \(E\) and \(P\) are obtained as follows:

\[
E = \begin{bmatrix} E_{u1} \\ E_c \\ E_{u2} \end{bmatrix}, \quad P = \begin{bmatrix} P_{u1} \\ P_c \\ P_{u2} \end{bmatrix}
\]

where, \(P_{ui} \in \mathbb{R}^{l_uixm}\), \(P_c \in \mathbb{R}^{lcxm}\) are the activities of unique and common TFs of sub-network \(i\) respectively. Note that \(P\) contains both unique and common components.

Example 1. Network decomposition: Consider the network presented in the supplementary Figure S3). The connectivity matrix \(A\) can be decomposed to the exclusive components and the common components in the following...
manner:

\[
A = \begin{bmatrix}
A_{uu1} & A_{uc1} & O_2 \\
A_{cu1} & A_{cc} & A_{cu2} \\
O_1 & A_{uc2} & A_{uu2}
\end{bmatrix} = \begin{bmatrix}
t g_5 \\
t g_1 \\
t g_2 \\
t g_3 \\
t g_6 \\
t f_4 \\
\end{bmatrix}
\begin{bmatrix}
t f_1 & t f_3 & t f_2 & t f_4 \\
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
\end{bmatrix}
\]

(5)

and partition matrices for sub-networks 1 and 2 respectively are,

\[
A_{uu1} = \begin{bmatrix} 1 \end{bmatrix}, \quad A_{uc1} = \begin{bmatrix} 0 \end{bmatrix}, \quad A_{cu1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad A_{cc} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad O_1 = \begin{bmatrix} 0 \end{bmatrix}
\]

(6)

\[
A_{uu2} = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad A_{uc2} = \begin{bmatrix} 0 \end{bmatrix}, \quad A_{cu2} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad A_{cc} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \quad O_2 = \begin{bmatrix} 0 & 0 \end{bmatrix}
\]

(7)

To initialize the ISNCA algorithm, we divide the expression matrix, \(E\) to \(E_i\) using equation 1 and connectivity matrix, \(A\) to \(A_i\) using equation 2. At the start of each iteration \(k\), we compute solution to \(\|E_i(k) - A_i P_i\|\), separately for sub-networks 1 and 2 using any standard NCA method, and obtain \(\hat{A}_i(k)\) and \(\hat{P}_{ui}(k)\). We can then proceed to construct \(\hat{A}(k)\) and \(\hat{P}(k)\) by combining equations 2 and 3, as

\[
\hat{A}(k) = \begin{bmatrix}
\hat{A}_{uu1} & \hat{A}_{uc1} & O_2 \\
\hat{A}_{cu1} & \hat{A}_{cc} & \hat{A}_{cu2} \\
O_1 & \hat{A}_{uc2} & \hat{A}_{uu2}
\end{bmatrix}, \hat{P}(k) = \begin{bmatrix}
\hat{P}_{u1}(k) \\
\hat{P}_c \\
\hat{P}_{u2}(k)
\end{bmatrix}
\]

(8)

and calculate the error of the entire network,

\[
e(k) = \|E - \hat{A}\hat{P}\|_F
\]

(9)
Here, \hat{A}_{cc} and \hat{P}_c are calculated from both sub networks 1 and 2. Therefore it is important to choose the best contribution either from sub network 1 or 2 or average of 1 and 2 based on the lowest error of reconstruction according to equation 9. If the error does not converge (see below), we proceed to update the sub-networks in the following manner. Let $T_i(k)$ be the common TGs contribution from sub-networks i, that is,

$$T_1(k) = \hat{A}_{cc1}(k)\hat{P}_{c1}(k), \quad T_2(k) = \hat{A}_{cc2}(k)\hat{P}_{c2}(k)$$ \hspace{1cm} (10)

We then update the matrices E_1 and E_2 for next iteration, from equation 11 by subtracting the common TGs contribution from other sub-network, that is,

$$E_1(k+1) = \begin{bmatrix} E_{u1} \\ E_c - \delta \cdot T_2(k) \end{bmatrix}, \quad E_2(k+1) = \begin{bmatrix} E_{u2} \\ E_c - \delta \cdot T_1(k) \end{bmatrix}$$ \hspace{1cm} (11)

Here, $\delta \in [0,1]$ denotes the attenuation factor (see below for details). Notice that E_c and E_{ui} do not change from iteration to iteration as they represent the original expression matrices. We then proceed to the next iteration and predict the solution to the expression $\|E_i(k+1) - A_iP_i\|$ using standard NCA methods. We keep iterating until the reconstruction error in equation 9 for the entire network is sufficiently small, for instance by

$$e(k+1) - e(k) < \epsilon$$ \hspace{1cm} (12)

In simulations, we can set ϵ to be 1e-05 and maximum number of iterations to 100.