Figure 1 A comparison of parameters estimated by the MATLAB and R implementations of ISOpure for the Bhattacharjee dataset. Each plot shows the entries of a parameter estimated using ISOpureR plotted against the corresponding entries estimated using the MATLAB code. The parameter is an average over 50 models run with different initial conditions. The line $y = x$ is indicated in black, and the linear regression line, or robust regression line for θ, is dashed orange. (A) Parameters from the Cancer Profile Estimation step of ISOpure are: (i) ν, the hyper-parameter for the Dirichlet distribution over θ, (ii) θ, the proportion of a patient sample from a known healthy-tissue profile, (iii) m, the average mRNA abundance cancer profile, (iv) α, the fraction of cancer cells for every patient sample, (v) ω a hyper-parameter for the Dirichlet distribution over m. (B) Parameters from the Patient Profile Estimation step of ISOpure are (i) ν, the hyper-parameter for the Dirichlet distribution over θ, (ii) θ, the proportion of a patient sample from a known healthy-tissue profile, (iii) c_n, the purified mRNA abundance cancer profile for each patient.
Figure 2. A comparison of parameters estimated by the MATLAB and R implementations of ISOpure for the Wallace dataset. Each plot shows the entries of a parameter estimated using ISOpureR plotted against the corresponding entries estimated using the MATLAB code. The parameter is an average over 50 models run with different initial conditions. The line $y = x$ is indicated in black, and the linear regression line, or robust regression line for θ, is dashed orange. A description of the parameters from the Cancer Profile Estimation step (A) and the Patient Profile Estimation step (B) of ISOpure is given in Figure 1.
Figure 3. A comparison of parameters estimated by the MATLAB and R implementations of ISOpure for the Wang dataset. Each plot shows the entries of a parameter estimated using ISOpureR plotted against the corresponding entries estimated using the MATLAB code. The parameter is an average over 25 MATLAB models run with different initial conditions and 13 R models; models converging to a local minimum were omitted. The line $y = x$ is indicated in black, and the linear regression line, or robust regression line for θ, is dashed orange. A description of the parameters from the Cancer Profile Estimation step (A) and the Patient Profile Estimation step (B) of ISOpure is given in Figure 1.