Additional file 1: Computation of $E\left[X_{im}^{d_i} X_{jm}^{d_j} \cdots X_{Km}^{d_K} \right]$ as a function of between chromosomes identity coefficients, in the case of independent markers.

Principles

Derivation of $E[XX'TXX']$ elements are simplified using three properties:

- $E\left(\sum_m X_{im} X_{km} \right) \left(\sum_m X_{jm} X_{im} \right) = \sum_m E\left[X_{im} X_{km} X_{jm} X_{im} \right] + \left(\sum_m E\left[X_{im} X_{km} \right] \left(\sum_m E\left[X_{jm} X_{im} \right] \right) - \sum_m \left(E\left[X_{im} X_{km} \right] E\left[X_{jm} X_{im} \right] \right) \right.

- We will demonstrate in this supplementary material that, at least for the K (1 to 4) and d_k (1 to 4) values present in our derivations, any expectation $E\left[X_{im}^{d_i} X_{jm}^{d_j} \cdots X_{Km}^{d_K} \right]$ with $\sum_l d_l$ even can be written as

$$E[p_m (1 - p_m)^{d_{i\cdots K}}] - [p_m (1 - p_m)]^{d_{i\cdots K}{d_j\cdots K}}$$

where parameters $a_{i\cdots K}^{d_{i\cdots K}}$ and $y_{i\cdots K}^{d_{i\cdots K}}$ are functions of identity states probabilities between gametes of $ij \cdots K$ individuals at marker m.

- When individual are repeated (e.g. $i = j$), $E\left[\cdots X_{im}^{d_i} X_{jm}^{d_j} \cdots \right] = E\left[\cdots X_{im}^{d_i+d_j} \cdots \right]$.

Let $\tau_z = \sum_l \left(2p_m (1 - p_m) \right)^2$ and a_{ij} the coancestry coefficient between individuals i and j.

$$\sum_m E\left[X_{im} X_{jm} X_{km} X_{im} \right] = \frac{1}{2} \tau a_{1111}^{1111} - \frac{1}{4} \tau_2 y_{1111}^{1111}$$

$$\sum_m E\left[X_{im} X_{km} \right] = \frac{1}{2} \tau a_{11}^{111} - \frac{1}{4} \tau_2 y_{111}^{111} = 2a_{ij}\tau$$

$$\sum_m E\left[X_{im} X_{km} \right] E\left[X_{jm} X_{im} \right] \left(2 \sum_m E\left[X_{jm} X_{im} \right] = 2a_{ij}\tau \right)$$

Thus $E[XX'TXX'] = \sum_k \sum_{jkl} \left(\left(\frac{1}{2} \tau a_{ijkl}^{1111} - \frac{1}{4} \tau_2 y_{ijkl}^{1111} + 4a_{ik}a_{jl}(\tau^2 - \tau_2) \right) \right)$. Elements of this summation are computed considering the third property given above.

Demonstration.

Let $S_{c_1c_2\cdots c_n}$ the identity state between n_c chromosomes at a given locus. This is an extension of the identity coefficients [35-37]. We do not consider pairs of chromosomes of two individuals, but a set of n_c chromosomes which may or not belong to different individuals. For instance, c_1 could mean the paternal allele at locus m for individual i (it will be noted in this case $c_1=\text{is}$). The figure SM1-1 represents the possible states, depending on the number of chromosomes. When $n_c = 2$ only two identity states are possible: locus are IBD ($S_{c_1c_2} = 1$) or not IBD ($S_{c_1c_2} = 2$). When $n_c = 3$ five identity states are possible and when there are 4 chromosomes, we find back the 15 classical identity states.

The codification for the genotypes are $X_{im} = (0, 1$ or $2) - 2p_m$. (It is equivalent to $X_{im} = g_{ims} + g_{imd}$ where g_{ims} and g_{imd} are the “values” of the alleles transmitted to individual i by its sire and its dam, with g_{ims} and $g_{imd} = (0$ or $1) - p_m$. As we only consider one locus in the following derivation the m indice will be omitted: $X_i = g_{is} + g_{id}$ and g_{is} and $g_{id} = (0$ or $1) - p$.

Different situations were encountered for the product $E\left[X_i^{d_i} X_j^{d_j} \cdots X_{K}^{d_K} \right]$.

- $E[X_i X_j] i \neq j$

- $E[X_i X_j^2] i \neq j$
In all case, we will decompose the X genotypes in their g values

$$E[X_i^2 X_j^2] \neq j$$

$$E[X_i X_j X_k^2] \neq j \neq k$$

$$E[X_i X_j X_k X_l] \neq j \neq k \neq l$$

This formula turns to be the weighted sum of elements such as $E[g_{is}^{d_i} g_{js}^{d_j-1} g_{jd} \cdots | S_{is,js,jd,\ldots}]$ which are very simple to derive from the allele frequency p.

Computations are simplified by the fact that those expectations are null when one of the elements of the product, here say g_{jd}, is uniq and the state $S_{is,js,jd,\ldots}$ such that the jd locus is not IBD with any other locus.

1) $E[X_i X_j] \neq j$

$$E[X_i X_j] = E[g_{is} g_{js}] + E[g_{is} g_{jd}] + E[g_{id} g_{js}] + E[g_{id} g_{jd}]$$

$$E[g_{is} g_{js}] = p(S_{is,js} = 1)\{(1-p)(0-p)^2 + p(1-p)^2\} + p(S_{is,js} = 0)\{(1-p)^2(0-p)^2 + 2p(1-p)(0-p) + p^2(1-p)^2\}$$

$$E[g_{is} g_{jd}] = p(S_{is,js} = 1)\{p(1-p)\}$$

$$E[X_i X_j] = p(1-p)[p(S_{is,js} = 1) + p(S_{is,jd} = 1) + p(S_{id,js} = 1) + p(S_{id,jd} = 1)]$$

It must be noted that the event $S_{is,js} = 1$ etc. corresponds to the classical identity states 1, 2, 4, 9, 10, that is $p(S_{is,js} = 1) = \delta_1 + \delta_2 + \delta_4 + \delta_5 + \delta_9 + \delta_{10};$ that $S_{is,jd} = 1$ corresponds to the 1, 3, 4, 12, 13 etc. The results being that

$$E[X_i X_j] = p(1-p)[4\delta_1 + 2[\delta_2 + \delta_3 + \delta_4 + \delta_5 + \delta_9 + \delta_{12}] + \delta_{10} + \delta_{11} + \delta_{13} + \delta_{14}] = 4p(1-p) a_{ij},$$

as expected

$$E[X_i X_j] = 4p(1-p) a_{ij}$$

2) $E[X_i X_j^3] \neq j$

$$E[X_i X_j^3] = E[(g_{is} + g_{id})(g_{js} + g_{jd})^2] = E[g_{is} g_{js}^2] + 3E[g_{is} g_{js} g_{jd}] + 3E[g_{is} g_{js} g_{jd}] + 3E[g_{id} g_{js} g_{jd}] + 3E[g_{id} g_{js} g_{jd}] + E[g_{id} g_{jd} g_{jd}]$$

$$E[g_{is} g_{js}^2] = p(S_{is,js} = 1)\{(1-p)(0-p)^4 + p(1-p)^4\} = p(S_{is,js} = 1)(p(1-p)(1-3p(1-p))$$

$$E[g_{is} g_{js} g_{jd}] = p(S_{is,js,jd} = 1)\{(1-p)(0-p)^4 + p(1-p)^4\} = p(S_{is,js,jd} = 4)\{(1-p)^2(0-p)^4 + 2p(1-p)(0-p)^2(1-p)^2 + p^2(1-p)^4\} = p(S_{is,js,jd} = 1)(p(1-p)(1-3p)) + p(S_{is,js,jd} = 4)[p(1-p)\]$$

$$E[X_i X_j^3] = p(1-p)[1-3p(1-p)]\{p(S_{is,js} = 1) + p(S_{is,jd} = 1) + p(S_{id,js} = 1) + p(S_{id,jd} = 1) + 6p(S_{is,js,jd} = 1) + 6p(S_{is,js,jd} = 1) + [p(1-p)]^2 3p(S_{is,js,jd} = 4) + 3p(S_{is,js,jd} = 2) + 3p(S_{id,js,jd} = 4) + 3p(S_{id,js,jd} = 2)\]$$
\[E[X_i X_j^2] = p(1-p)[(1-3p(1-p))[16\delta_1 + 2(\delta_2 + \delta_3) + 8(\delta_4 + \delta_5) + 2(\delta_6 + \delta_12) + \delta_10 + \delta_{11} + \delta_13 + \delta_14) + [p(1-p)]^2[6(\delta_2 + \delta_3 + \delta_9 + \delta_{12}) + 3(\delta_{10} + \delta_{11} + \delta_{13} + \delta_{14})] \]

3) \[E[X_i^2 X_j^2] \ i \neq j \]

\[E[X_i^2 X_j^2] = E \left[(g_{iS} + g_{id})^2 (g_{js} + g_{jd})^2 \right] = E[g_{iS}^2 g_{js}^2] + E[g_{iS}^2 g_{jd}^2] + E[g_{id}^2 g_{js}^2] + E[g_{id}^2 g_{jd}^2] + 2E[g_{iS}^2 g_{js} g_{jd}] + 2E[g_{iS} g_{id} g_{js} g_{jd}] + 2E[g_{id} g_{js} g_{jd}] + 4E[g_{iS} g_{id} g_{js} g_{jd}] \]

\[E[g_{iS}^2 g_{js}^2] = p(S_{iS,js} = 1)((1-p)(0-p)^4 + p(1-p)^4) + p(S_{iS,js} = 2)((1-p)^2(0-p)^2 + 2p(1-p)(1-p)^2(0-p)^2 + p(S_{iS,js} = 1)(p(1-p)[p^3 + (1-p)^3]) + p(S_{iS,js} = 2)[p(1-p)]^2 \]

\[E[g_{iS}^2 g_{js} g_{jd}] = p(S_{iS,js,jd} = 1)((1-p)(0-p)^4 + p(1-p)^4) + p(S_{iS,js,jd} = 3)((1-p)^2(0-p)^2 + 2p(1-p)(1-p)^2(0-p)^2 + p^2(1-p)^4) \]

The state \(S_{iS,js,jd} = 3 \) corresponds to \(g_{js} \) IBD to \(g_{jd} \) and \(g_{is} \) not IBD to the others. In the other states we have terms like \(E[g_{jd}] = 0 \) in the conditional expectation \[E[g_{iS}^2 g_{js} g_{jd} | S_{iS,js,jd}] \].

\[E[g_{iS}^2 g_{jd} g_{js} g_{jd}] = p(S_{iS,js,jd} = 1)(p(1-p)[p^3 + (1-p)^3]) + p(S_{iS,js,jd} = 3)[p(1-p)]^2 \]

\[E[g_{iS} g_{id} g_{js} g_{jd}] = p(S_{iS,js,jd} = 1)((1-p)(0-p)^4 + p(1-p)^4) + p(S_{iS,js,jd} = 6) + p(S_{iS,js,jd} = 9) + p(S_{iS,js,jd} = 12)[(1-p)^2(0-p)^2 + 2p(1-p)(1-p)^2 + p^2(1-p)^4] \]

Finally

\[E[X_i^2 X_j^2] = (p(1-p)[p^3 + (1-p)^3)] [p(S_{iS,js} = 1) + p(S_{iS,js} = 1) + p(S_{id,js} = 1) + 2p(S_{id,js} = 1) + 2p(S_{id,js} = 1) + 4p(S_{id,js} = 1) + [p(1-p)]^2 [p(S_{iS,js} = 2) + p(S_{iS,js} = 2) + p(S_{iS,js} = 2) + 2p(S_{iS,js} = 3) + 2p(S_{id,js} = 3) + 2p(S_{id,js} = 3) + 2p(S_{id,js} = 3) + 4p(S_{id,js} = 3)] \]
\[S_{ls,js} = 1 \quad x \quad x \quad x \quad x \quad x \quad x \quad 1 \]
\[S_{ls,jd} = 1 \quad x \quad x \quad x \quad x \quad x \quad x \quad 1 \]
\[S_{id,js} = 1 \quad x \quad x \quad x \quad x \quad x \quad x \quad 1 \]
\[S_{id,jd} = 1 \quad x \quad x \quad x \quad x \quad x \quad x \quad 1 \]
\[S_{is,js,jd} = 1 \quad x \quad x \quad x \quad x \quad x \quad x \quad 1 \]
\[S_{id,js,jd} = 3 \quad x \quad x \quad x \quad x \quad x \quad x \quad 2 \]
\[S_{is,ids} = 2 \quad x \quad x \quad x \quad x \quad x \quad x \quad 2 \]
\[S_{is,js,jd} = 2 \quad x \quad x \quad x \quad x \quad x \quad x \quad 2 \]
\[S_{is,js,jd} = 6 \quad x \quad x \quad x \quad x \quad x \quad x \quad 4 \]
\[S_{is,js,jd} = 9 \quad x \quad x \quad x \quad x \quad x \quad x \quad 4 \]
\[S_{is,js,jd} = 12 \quad x \quad x \quad x \quad x \quad x \quad x \quad 4 \]

\[
E[X_i^2 X_j^2] = [p(1 - p)[1 - 3p(1 - p)](16\delta_1 + 4(\delta_2 + \delta_3 + \delta_4 + \delta_5) + 2(\delta_9 + \delta_{12}) + \delta_{10} + \delta_{11} + \delta_{13} + \delta_{14}) + p(1 - p)^2(4(\delta_2 + \delta_3 + \delta_4 + \delta_5 + \delta_{15}) + 16\delta_6 + 8(\delta_7 + \delta_8) + 6(\delta_9 + \delta_{12}) + 3(\delta_{10} + \delta_{11} + \delta_{13} + \delta_{14}))]
\]

4) \[E[X_i X_j X_k^2] \quad i \neq j \neq k\]

\[
E[X_i X_j X_k^2] = E[(g_{ls} + g_{ld})(g_{js} + g_{jd})(g_{ks} + g_{kd})^2] = E[g_{ls} g_{js} g_{ks}^2] + E[g_{ls} g_{jd} g_{kd}^2] + E[g_{id} g_{js} g_{ks}^2] + E[g_{id} g_{jd} g_{kd}^2] + 2E[g_{ls} g_{js} g_{ks} g_{kd}] + 2E[g_{id} g_{jd} g_{ks} g_{kd}] + 2E[g_{ls} g_{jd} g_{ks} g_{kd}] + 2E[g_{id} g_{js} g_{ks} g_{kd}]
\]

\[
E[g_{ls} g_{js} g_{ks}^2] = p(S_{is,js,ks} = 1)(1 - p)(0 - p)^2 + p(1 - p)^2 + p(S_{is,js,ks} = 2)(1 - p)^2(0 - p)^2 + 2p(1 - p)(1 - p)^2 + p(1 - p)^2 = p(S_{is,js,ks} = 1)p(1 - p)[1 - 3p(1 - p)] + p(S_{is,js,ks} = 2)p(1 - p)^2
\]

\[
E[g_{ls} g_{jd} g_{kd}^2] = p(S_{is,js,ks,kd} = 1)p(1 - p)[1 - 3p(1 - p)] + p(S_{is,js,ks,kd} = 6) + p(S_{is,js,ks,kd} = 9) + p(S_{is,js,ks,kd} = 12)p(1 - p)^2
\]

5) \[E[X_i X_j X_k X_l] \quad i \neq j \neq k \neq l\]

\[
E[X_i X_j X_k X_l] = E[(g_{ls} + g_{ld})(g_{js} + g_{jd})(g_{ks} + g_{kd})(g_{ls} + g_{ld})] = \\
\sum_{a_i \in \{s,d\}} \sum_{a_j \in \{s,d\}} \sum_{a_k \in \{s,d\}} \sum_{a_l \in \{s,d\}} E[g_{ia} g_{ja} g_{ka} g_{la}]
\]
\[E[g_{is}g_{js}g_{ks}g_{ls}] = p(S_{is,js,ks,ls} = 1)p(1 - p)[1 - 3p(1 - p)] + \{p(S_{is,js,ks,ls} = 6) + p(S_{is,js,ks,ls} = 9) + p(S_{is,js,ks,ls} = 12)\}[p(1 - p)]^2 \]

\[E[X_iX_jX_kX_l] = p(1 - p)[1 - 3p(1 - p)] \sum_{a_i \in \{s,d\}} \sum_{a_j \in \{s,d\}} \sum_{a_k \in \{s,d\}} \sum_{a_l \in \{s,d\}} p(S_{ia,ja,ka,la} = 1) + [p(1 - p)]^2 \sum_{a_i \in \{s,d\}} \sum_{a_j \in \{s,d\}} \sum_{a_k \in \{s,d\}} \sum_{a_l \in \{s,d\}} p(S_{ia,ja,ka,la} = 6) + p(S_{ia,ja,ka,la} = 9) + p(S_{ia,ja,ka,la} = 12) \]
Figure SM1-1

Possible IBD states, depending on the number of chromosomes

2 locus

S1 S2
1
2

3 locus

S1 S2 S3 S4 S5
1
2
3

4 locus

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15
1
2
3
4