Most human genes undergo alternative splicing, and perhaps one of the most extreme examples is that of the calcitonin gene (CALCA), which produces two distinct peptide-hormone products: calcitonin (CT) in the thyroid gland and α-calcitonin gene-related peptide (α-CGRP) in the brain [35]. The two mature peptides have no amino acid sequence in common and arise from translation of alternatively spliced mRNAs. CT and α-CGRP are represented in RefSeq mRNA records NM_001033952 and NM_001033953, respectively, for the CALCA gene. The LRG record LRG_13 has been created for this gene.

The INK4a/ARF multifunctional tumor-suppressor locus [36] (CDKN2A) provides an additional example of the need to record all clinically relevant transcripts. The gene comprises four exons whose transcripts are alternatively spliced and encode both the p16INK4a and p14ARF tumor-suppressor proteins. The unexpected feature of this gene is that alternative first exons used by the two major transcripts result in the shared exon 2 being translated in different reading frames. The LRG record LRG_11 has been created for this gene.