Calculation of entropy from Singular Value Decomposition of microarray data
(according to Alter et al, PNAS 2000 (97) 18:10101:10106)

Microarray data can be expressed as a matrix of G rows (corresponding to genes) and P columns (arrays). To calculate the entropy of a subset of g X N_j matrix (M), singular value decomposition (also known as Principal Components Analysis) is performed on the centered matrix. SVD is a linear decomposition technique which identifies the full set of eigenvectors of a given non-singular matrix. The eigenvectors can be sorted by their eigenvalues, which assigns weights to the vectors.

$$\Sigma_{k\times k} = V \ast S \ast V^T$$

where $\Sigma_{k\times k}$ is the covariance matrix of M and k is minimum of (g,N_j). The columns of matrix V are the eigenvectors of the matrix M and S is a matrix which has the corresponding eigenvalues λ_i^2 on the diagonal and zeros elsewhere. (λ_i is the corresponding i-th singular value of the matrix M.)

The fractional contribution of each eigenvector to the information can be calculated from its eigenvalues as follows:

$$p_i = \frac{\lambda_i^2}{\sum_{j=1}^{k} \lambda_j^2}$$

These contributions of eigenvectors of the matrix M are used to calculate the Shannon’s entropy of the matrix:

$$0 \leq H = -\frac{1}{\log(L)} \sum_{i=1}^{N_j} p_i \log(p_i) \leq 1$$

Where p_i is the fractional contribution of eigenvectors, L is the rank of the matrix and H is Shannon’s entropy bounded between (0,1).