Figure 4: Critical manifolds for $g_{SI} = 0.5615$ mS/cm² projected onto (h_{SI}, m_{SO}, V)-space of the fast subsystem of (1), where the slow variables m_{SO} and h_{SI} are treated as parameters; panels (a) and (b) show two different viewpoints of the surfaces of equilibria, coloured black when stable and red when not; from the same viewpoints, panels (c) and (d) also show maxima and minima with respect to V of the two-parameter families of periodic orbits, coloured blue when stable and magenta when not. The equilibrium manifold splits into six sheets labelled S_{1}^{a}, S_{1}^{r}, S_{2}^{a}, S_{2}^{r}, S_{3}^{a}, and S_{3}^{r}, that are separated by four fold curves F_{0} (not shown), F_{1}, F_{2}, and F_{3}, and a curve of Hopf bifurcations labelled H; the saddle and attracting families of periodic orbits are labelled P^{r} and P^{a}, respectively.

The geometry of S and P depends on the values of the other parameters in the system, such as the conductance g_{SI}. In order to illustrate the spike generation, we consider the fast subsystem