Figure 1: Responses of system (1) to a current injection of $I_{app} = 20 \mu A/cm^2$ from $t = 50$ to $t = 53$; overlaid are the responses corresponding to different values of the maximal conductance g_{SI} (in mS/cm2) of the slow inward current, namely, $g_{SI} = 0.1$, $g_{SI} = 0.5$ and $g_{SI} = 0.6$, which are examples of responses with no ADP, with ADP and a (three-spike) burst with ADP, respectively.

A short-current injection whose duration guarantees that the rapidly rising membrane potential will reach and cross its local maximum creating a fully developed spike; see [17, 25, 26, 32] for more details. Two of the three typical responses shown in Figure 1 exhibit a positive deflection of the membrane potential characterised by a ‘hump’ in the time trace of the membrane potential at the end of the burst; this is called after-depolarisation (ADP), which can exist, provided $\tau_{mFO} < \tau_{mSI}$ [17]. Only the first response (lower curve) is a spike without ADP. Note that the last trace, which corresponds to $g_{SI} = 0.6$, the highest value of g_{SI} in the example, has sufficiently strong I_{SI} to enable the membrane potential to cross the excitability threshold during the ADP, so that additional spikes are fired.

System (1) defined by equations (2)–(4) evolves on multiple time scales, because C_m/g_{FO} (as an approximation of the time scale for V) and τ_x with $x \in \{ m_{SI}, m_{FO}, m_{SO}, h_{SI} \}$ have different orders of magnitude. As indicated in Table 1, m_{SO} and h_{SI} are slow variables that vary on a time scale that is (roughly) 10 times slower than m_{SI} and m_{FO}, and 100 times slower than V. In particular, this means that our model is capable of firing an arbitrarily large number of spikes during the ADP. More precisely, an increase in g_{SI}, as in Figure 1 and throughout this paper, has the net effect that the slow variable h_{SI} becomes even slower, so that more spikes can be fired during the time it takes for h_{SI} to relax back to its equilibrium value. In this paper we are not interested in the exact nature of this process, but we mention here that a large number...