Generating test cases for marine safety and security scenarios

Agent $\equiv \{\text{CargoShip}, \text{Zodiac}, \ldots\}$
Mode $\equiv \{\text{Approaching}, \text{Smuggling}, \ldots\}$
SmugglingMode $\equiv \{\text{Loading}, \text{Unloading}, \ldots\}$

universe Position // Geographic coordinates
universe Operation // Operations of a vignette

AgentPosition : Agent \mapsto Position
Mode : Operation \mapsto Mode
SmugglingMode : Operation \mapsto SmugglingMode
BeachPoint : Operation \mapsto Position
RendezvousPoint : Operation \mapsto Position

Rendezvousing$(A_1, A_2 : \text{Agent}; Op : \text{Operation}) \equiv$
\[\text{if } \text{Mode}(Op) = \text{Approaching} \text{ then} \]
\[\text{MoveAgent}(A_1, \text{RendezvousPoint}(Op)) \]
\[\text{if } \text{Mode}(Op) = \text{Smuggling} \text{ then} \]
\[\text{if } \text{SmugglingMode}(Op) = \text{Loading} \text{ then} \]
\[\text{MoveAgent}(A, \text{RendezvousPoint}(Op)) \]
\[\text{if } \text{SmugglingMode}(Op) = \text{Unloading} \text{ then} \]
\[\text{MoveAgent}(A, \text{BeachPoint}(Op)) \]

MoveAgent$(A : \text{Agent}; P : \text{Position}) \equiv$
NextPosition(A, P), ...

// Incrementally generates a trajectory by computing intermediate agents positions
// depending on various factors, gradually moving an agent towards its destination.

Fig. 5 ASM model of a Rendezvous Pattern between two agents A_1, A_2 in Territorial Sea (a belt of coastal waters extending from the baseline of a coastal state): A_1 is of type CargoShip and A_2 is of type Zodiac.

A sample ASM model for a Rescuing Pattern among three agents is shown in Figure 6. In this SAR operation, a helicopter agent A_2 first searches and then identifies the location of the fishing boat agent A_1 in a distress situation. After locating the fishing boat, a coast guard vessel agent A_3 first extracts persons from the fishing boat and then secures the boat. The operation $\text{MoveAgent}(\ldots)$ is defined in the Rendezvousing example.

6 Applications

An operational prototype of the Vignette Generator has been designed and developed in Java based on the concepts presented in this paper. It is capable of generating a wide spectrum of vignette specifications for the INFORM Lab simulation environment. A screenshot of the Vignette Generator illustrating a complex SAR scenario is illustrated in Figure 7.

The Vignette Generator has the potential to interoperate with different simulation environments, namely those for which the corresponding interface configuration format is determined, due to the following features: