Fig. 4

A. Western blot analysis showing ATM and α-tubulin levels under control (ctr) and ATM inhibitor (ATMi) conditions.

B. Relative cell viability with Olaparib. The graph shows the decrease in viability as a function of Olaparib concentration. The data is represented with control (ctr) and ATM inhibitor (ATMi) conditions. The concentrations tested are 0, 0.5, 1, 1.5 µM, with DMSO as a control.

C. Relative cell viability with Iniparib. Similar to B, this graph shows the decrease in viability as a function of Iniparib concentration. The data is represented with control (ctr) and ATM inhibitor (ATMi) conditions. The concentrations tested are 0, 12.5, 25, 50, 100, 200 µM, with DMSO as a control.

D. Flow cytometry data showing subG1 and G2/M percentages under different conditions:

- Control (ctr): subG1 4.5%, G2/M 28.1%
- ATM inhibitor (ATMi): subG1 4.8%, G2/M 32.7%
- Olaparib 100 µM: subG1 10.6%, G2/M 24.3%
- Olaparib 100 µM with ATM inhibitor: subG1 10.9%, G2/M 45.7%
- Iniparib 200 µM: subG1 8.6%, G2/M 34.5%
- Iniparib 200 µM with ATM inhibitor: subG1 12.9%, G2/M 35.5%

E. Bar graph showing relative colony number with Olaparib. The graph displays the reduction in colony number as a function of Olaparib concentration. The data is represented with control (ctr) and ATM inhibitor (ATMi) conditions. The concentrations tested are 0, 2.5, 5 µM, with DMSO as a control.

F. Bar graph showing relative colony number with Iniparib. Similar to E, this graph shows the reduction in colony number as a function of Iniparib concentration. The data is represented with control (ctr) and ATM inhibitor (ATMi) conditions. The concentrations tested are 0, 25, 50 µM, with DMSO as a control.