M. smegmatis SMR5: decreased transcript levels of 231 genes under nitrogen starvation

- Metabolism
 - I: Lipid transport and metabolism
 - Q: Carbohydrate transport and metabolism
 - P: Inorganic ion transport and metabolism
 - Q: Secondary metabolites biosynthesis, transport and catabolism
 - E: Amino acid transport and metabolism
 - C: Energy production and conversion
 - H: Coenzyme transport and metabolism
 - F: Nucleotide transport and metabolism

Metabolism

- Poorly characterized
 - X: Not in COG
 - R: General function prediction only
 - S: Function unknown

Poorly characterized

- Information storage and processing
 - J: Translation, ribosomal structure and biogenesis
 - K: Transcription
 - L: Replication, recombination and repair

Information storage and processing

- Cellular processes and signaling
 - O: Posttranslational modification, protein turnover, chaperones
 - M: Cell wall/membrane/envelope biogenesis
 - D: Cell cycle control, cell division, chromosome partitioning
 - T: Signal transduction mechanisms
 - N: Cell motility
 - U: Intracellular trafficking, secretion and vesicular transport

Cellular processes and signaling

M. smegmatis SMR5: increased transcript levels of 284 genes under nitrogen starvation

- Poorly characterized
 - X: Not in COG
 - R: General function prediction only
 - S: Function unknown

Metabolism

- Information storage and processing
 - K: Transcription
 - J: Translation, ribosomal structure and biogenesis
 - L: Replication, recombination and repair
 - B: Chromatin structure and dynamics

Information storage and processing

- Cellular processes and signaling
 - O: Posttranslational modification, protein turnover, chaperones
 - T: Signal transduction mechanisms
 - M: Cell wall/membrane/envelope biogenesis
 - D: Cell cycle control, cell division, chromosome partitioning
 - V: Defense mechanisms
 - U: Intracellular trafficking, secretion and vesicular transport