A
input: points S_1 from the lateral image ($dim1 \times dim3$ pixels)
points S_2 from the aligned oral image ($dim2 \times dim3$ pixels)
output: 3D expression array P

1. for x from 1 to $dim1$
2. for y from 1 to $dim2$
3. for z from 1 to $dim3$
4. $P[x][y][z] = \max(S_1[x][z], S_2[y][z])$
5. return P

B
input: line L drawn on the expression image ($dim1 \times dim3$ pixels)
output: 3D expression array P

1. for x from 1 to $dim1$
2. for y from 1 to $dim3$
3. for z from 1 to $dim3$
4. [calculate distance d from P_{xyz} to L]
5. [calculate coordinates of points S_1 and S_2 located distance d on both sides of L]
6. [calculate angles α between S_2, L, P_{xyz} and β between S_1, L, P_{xyz}]
7. $P[x][y][z] = (\alpha \times S_1 + \beta \times S_2) / \pi$
8. return P

a full page wide