Figure 5 - Pseudo code for Pro-CLARANS algorithm

Input: A training set D, $D = \{O_h\}_{h=1..n}$; n is the size of D

Initialize: $f(V)_{max} = 0$; iteration = 0;

Repeat

1. Set C an arbitrary node from D; ($C = [R_1, R_2, ..., R_k]$)

2. Set $j = 1$;

3. Repeat
 - Consider a random neighbor C^* of C;
 - Compute TS_{ih} of C^* and TS'_{ih} of C;
 - If TS_{ih} > TS'_{ih} then
 - $C = C^*$;
 - $j = 1$;
 - Else
 - $j = j + 1$;

4. For each object $O_h \in D$ do
 - Compute the similarity score of O_h with each medoid R_i ($i \in [1..K]$), using Smith Waterman algorithm;
 - Assign O_h to the cluster with the nearest R_i;

5. Compute $f(V)$;

6. If $f(V) \leq f(V)_{max}$ then
 - iteration = iteration + 1;
 - Else
 - $f(V)_{max} = f(V)$;
 - BestSets = CurrentSets;
 - Go back to Step3;

Until iteration = q;

End

Output: BestSets; BestSets is the best partition of D into K clusters; each cluster is defined by a medoid R_i