Figure 4 - Pseudo code for Pro-CLARA algorithm

Input: A training set D, $D = \{O_h\}_{h=1..n}$; n is the size of D

Initialize: $f(V)_{\text{max}} = 0$; $\text{iteration} = 0$;

Repeat

1. Draw a sample S of $40 + 2K$ sequences randomly from D;

2. Call Pro-PAM algorithm to find K medoids of S: $R_i (i \in \{1..K\})$;

3. **For each** $O_h \in D$ **do**

 - Compute the similarity score of O_h with each medoid $R_i (i \in \{1..K\})$, using Smith Waterman algorithm;

 - Assign O_h to the cluster with the nearest R_i;

4. **Compute** $f(V)$;

5. **If** $f(V) < f(V)_{\text{max}}$ **then**

 \hspace{1em} $iteration = iteration + 1$;

 Else

 \hspace{1em} $f(V)_{\text{max}} = f(V)$;

 BestSets = **CurrentSets**; (**CurrentSets** are Subsets obtained in this partition)

 Go back to Step 2;

Until $iteration = q$;

End

Output: BestSets; BestSets is the best partition of D into K clusters; each cluster is defined by a medoid R_i.