Figure 3 - Pseudo code for Pro-PAM algorithm

Input: A sample S of the training set D; $S = \{O_h\}_{h=1..m}$; m is the size of S

1. Select K objects arbitrarily from S: R_i ($i \in [1..K]$);

2. For each pair of non-selected object O_h in S and selected object R_i do
 - Calculate the total score TS_{ih};

3. Select the maximal TS_{ih}: $MaxTS_{ih}$, and mark the corresponding objects R_i and O_h;

4. If $MaxTS_{ih} > 0$ then

 $R_i = O_h$;

 Go back to Step 2;

 Else

 For each $O_h \in S$ do

 - Compute the similarity score of O_h with each centroid R_i ($i \in [1..K]$), using Smith Waterman algorithm;

 - Assign O_h to the cluster with the nearest R_i;

 End

Output: BestSets; BestSets is the best partition of S into K clusters; each cluster is defined by a medoid R_i