Figure 1 - Pseudo code for Pro-Kmeans algorithm

Input: A training set D, $D = \{O_h\}_{h=1..n}$; n is the size of D

Initialize: $f(V)_{\text{max}} = 0$; iteration $= 0$;

Repeat

1. Partition randomly D into K nonempty subsets;

2. **For** each $i \in [1..K]$ do
 - Compute the similarity score of each pair of proteins in the subset S_i using Smith Waterman algorithm;
 - Compute the SumScore(S_i, O_j) of each protein j in S_i;
 - The protein j which have the maximum SumScore(S_i, O_j) in S_i is considered as the centroid R_i of the subset S_i;

3. **For** each $O_h \in D$ do
 - Compute the similarity score of O_h with each centroid R_i ($i \in [1..K]$), using Smith Waterman algorithm;
 - Assign O_h to the cluster with the nearest R_i; (The R_i which have the maximum score of similarity with the object O_h)

4. Compute $f(V)$;

5. **If** $f(V) < f(V)_{\text{max}}$ **then**
 - iteration $= \text{iteration} + 1$;
 Else
 - $f(V)_{\text{max}} = f(V)$;
 - BestSets = CurrentSets; (CurrentSets are Subsets obtained in this partition)
 - Go back to Step 2;

Until iteration $= q$;

End

Output: BestSets; BestSets is the best partition of D into K clusters; each cluster is defined by a centroid R_i