are not particularly interested in the actual amount, unless of course one state dominated. We
do not expect this to be the case however, since the SU(3) related decay $B^0 \rightarrow J/\psi K^{*0}$,
$K^{*0} \rightarrow K^+ \pi^-$ has a substantial components of both CP states; the PDG quotes gives the
longitudinal fraction as $(80 \pm 8 \pm 5)\%$ [7].

The even and odd CP components can be disentangled by measuring the appropriate angular
quantities of each event. Following Dighe et al. [64], we can decompose the decay amplitude
for a B_s as

$$A(B_s \rightarrow J/\psi \phi) = A_0(m_\phi) / E_\phi \epsilon_{J/\psi}^T - A_\parallel \epsilon_{J/\psi}^T / \sqrt{2} - i A_\perp \epsilon_{\phi}^* \cdot \hat{p} / \sqrt{2},$$ (50)

where $\epsilon_{J/\psi}$ and ϵ_ϕ are polarization 3-vectors in the J/ψ rest frame, \hat{p} is a unit vector giving
the direction of the ϕ momentum in the J/ψ rest frame, and E_ϕ is the energy of the ϕ in the
J/ψ rest frame. We note that the corresponding amplitude for the \bar{B}_s decay are $\bar{A}_0 = A_0$,
$\bar{A}_\parallel = A_\parallel$, and $\bar{A}_\perp = -A_\perp$. The amplitudes are normalized so that

$$d\Gamma(B_s \rightarrow J/\psi \phi) / dt = |A_0|^2 + |A_\parallel|^2 + |A_\perp|^2.$$ (51)

The ϕ meson direction in the J/ψ rest frame defines the \hat{x} direction. The \hat{z} direction is
perpendicular to the decay plane of the $K^+ K^-$ system, where $p_\psi(K^+) \geq 0$. The decay
direction of the ℓ^+ in the J/ψ rest frame is described by the angles (θ, ϕ). The angle ψ is that
formed by the K^+ direction with the \hat{x}-axis in the ϕ rest frame. Figure 20 shows the angles.

Figure 20: Pictoral description of the decay angles. On the left θ and ϕ defined in the J/ψ
rest frame and on the right ψ defined in the ϕ rest frame. (From T. Kuhr [65].)

The decay width can be written as

$$d^4\Gamma[B_s \rightarrow (\ell^+ \ell^-) J/\psi (K^+ K^-)_{\phi}] / d\cos \theta d\phi d\cos \psi dt = \frac{9}{32\pi} [2|A_0|^2 \cos^2 \psi (1 - \sin^2 \theta \cos^2 \phi)$$