Algorithm convergence

THEOREM 1. Given matrix H and vector d, the algorithm converges. The number of iteration depends on parameters α and ε.

PROOF. The convergence of the algorithm depends on Equation (6). Equation (6) converges if and only if $\rho(aH) < 1$, where $\rho(aH)$ is the spectral radius of matrix aH.

Since $h(i, j) \geq 0$ and for each row i of matrix H, either $\sum_{j \in \text{Ne}(i)} h(i, j) = 1$ or $\sum_{j \in \text{Ne}(i)} h(i, j) = 0$.

$$\rho(H) = \|H\|_1 = 1.$$ It is easy to see that $\rho(aH) = a\rho(H) < 1$ for $0 \leq \alpha < 1$.

Therefore, Equation (6) converges and so does the algorithm. Furthermore, according to Equation (6),

$$pr'^t = (1 - \alpha)d + aH \ast pr'^{t-1}$$

$$pr^{t-1} = (1 - \alpha)d + aH \ast pr'^{t-2}$$

And thus, we have

$$pr' - pr'^{t-1} = aH(pr'^{t-1} - pr'^{t-2}) = \cdots = (aH)^{t-1}(pr^1 - pr^0) = (aH)^{t-1}[\alpha(H - I)d]$$

Therefore

$$\|pr' - pr'^{t-1}\| = \|(aH)^{t-1}(pr^1 - pr^0)\| = \|(aH)^{t-1}[\alpha(H - I)d]\| \leq \alpha^t\|(H - I)d\| \leq \varepsilon,$$

and

$$t \geq \log[\varepsilon / \|(H - I)d\|] / \log \alpha$$

Clearly, given matrix H and vector d, the iteration times t depends on parameter α and ε.

To investigate the influence of the parameter α and ε on the number of iterations which are needed to converge, firstly, taking $\varepsilon = 10^{-8}$ we compare the number of iterations required to converge by setting different values of α, ranging from 0.5 to 0.999. The results are tabulated in Table 1. As shown in Table 1, for $\alpha = 0.5$, the
algorithm needs only 28 iterations to converge to a tolerance of 10^{-8}. For $\alpha = 0.8$, the number of iterations increases to 80. For $\alpha = 0.999$, the number of iterations rise sharply up to 1615, which is about 58 times larger than for $\alpha = 0.5$. So parameter α can indeed control the convergence rate of the algorithm.

To investigate the influence of the parameter ε on the convergence, we compare the iterations by setting ε different values ranging from 10^{-2} to 10^{-13} for $\alpha = 0.5, 0.7, 0.8, 0.9$, respectively. Figure 1 shows that no matter what the value of α is, with the decrease of ε the number of iterations increases slowly. When the value of ε is 10^{-13}, which is 10^{-11} times smaller than 10^{-2}, the number of iterations required for convergence only increases about 4 times. Compared with α, the effect of ε on the iteration is smaller. In fact, ε controls the precision of pr values. The smaller the ε value is, the more precise the pr values are. In order to distinguish the ranking scores of proteins, a suitable value of ε should be set. However, the exact values of the pr vector are not as important as the correct ordering of the values in the vector.

Moreover, the algorithm needs more time to converge, if the value of ε is too small. Compromising the convergence of the algorithm and the precision of pr values, the parameter ε is set as 10^{-8} in this study.

<table>
<thead>
<tr>
<th>α</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>0.99</th>
<th>0.999</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of iterations</td>
<td>28</td>
<td>37</td>
<td>52</td>
<td>80</td>
<td>160</td>
<td>900</td>
<td>1615</td>
</tr>
</tbody>
</table>

The table shows the relationship between the values of parameter α and the number of iterations required to converge.

Table 1 - Effect of parameter α on the number of iterations
Figure 1 - Number of iterations needed for ION convergence with different parameter ε.

X-axis represents the values of parameter ε. Y-axis represents the number of iterations needed for ION convergence.