\[\frac{dV}{dt} = 0 \quad \frac{dCa^{2+}}{dt} = 0 \]

A. Limit cycle with membrane potential, \(V_m \), and \(Ca^{2+} \) concentration, \(C_{Ca^{2+}} \), for different currents, \(I_0 \): 0.05, 0.07, 0.15.

B. Time evolution of membrane potential, \(V_m \), for \(I_0 = 0.05 \) and \(C_{Ca^{2+}} \) concentration.

C. Time evolution of membrane potential, \(V_m \), for \(I_0 = 0.05 \) and \(C_{Ca^{2+}} \) concentration.

D. Limit cycle with membrane potential, \(V_m \), and \(Ca^{2+} \) concentration, \(C_{Ca^{2+}} \), for different currents, \(I_0 \): 0.05, 0.07, 0.15.

E. Time evolution of membrane potential, \(V_m \), for \(I_0 = 0.07 \) and \(C_{Ca^{2+}} \) concentration.

F. Time evolution of membrane potential, \(V_m \), for \(I_0 = 0.07 \) and \(C_{Ca^{2+}} \) concentration.

G. Limit cycle with membrane potential, \(V_m \), and \(Ca^{2+} \) concentration, \(C_{Ca^{2+}} \), for different currents, \(I_0 \): 0.05, 0.07, 0.15.

H. Time evolution of membrane potential, \(V_m \), for \(I_0 = 0.15 \) and \(C_{Ca^{2+}} \) concentration.

I. Time evolution of membrane potential, \(V_m \), for \(I_0 = 0.15 \) and \(C_{Ca^{2+}} \) concentration.