Application Example: Michaelis-Menten

To give a clearer understanding of our framework, we provide all the intermediate technical steps necessary for applying the framework to the model invalidation of the Michaelis-Menten reaction mechanism

\[E + S \xrightarrow{p_1} C \xrightarrow{p_2} E + P. \]

For simplicity of the notation we define the state vector \(x \) to be composed of the concentrations

\[x^T := [S, C, E, P], \]

denoting with \(x_i \) the \(i \)-th element of the vector \(x \). The timely evolution of the concentrations is given by the following ordinary differential equations

\[
\begin{align*}
\frac{dx_1}{dt} &= -p_1 x_1 x_3 + p_2 x_2 \\
\frac{dx_2}{dt} &= +p_1 x_1 x_3 - p_2 x_2 - p_3 x_2 \\
\frac{dx_3}{dt} &= -p_1 x_1 x_3 + p_2 x_2 + p_3 x_2 \\
\frac{dx_4}{dt} &= +p_3 x_2.
\end{align*}
\]

By considering the moiety conservation equations

\[
\frac{dx_2}{dt} + \frac{dx_3}{dt} = 0
\]

and

\[
\frac{dx_1}{dt} + \frac{dx_2}{dt} + \frac{dx_4}{dt} = 0
\]

it is possible to reduce the above 4th order system and to express it as a 2nd order system. A further simplification could be to consider a quasi-steady or a quasi-equilibrium state, but as the Michaelis-Menten is indistinguishable from the Henri kinetics under such conditions we do not apply it. We also assume that both concentrations \(x_1, x_2 \) can be measured, thus \(y = [x_1, x_2]^T \).

If we now consider a standard Euler discretization scheme with time-step \(h \)

\[\dot{x}(k) \approx \frac{x[k+1] - x[k]}{h}, \]

the above-mentioned 2nd order system is reformulated into the following explicit discrete model

\[
\begin{align*}
x_1^{+} &= x_1 + hp_1[(x_2 - 1)x_1 + K_S x_2] \\
x_2^{+} &= x_2 + hp_1[(1 - x_2)x_1 + K_M x_2],
\end{align*}
\]
where $K_S = p_1/p_2$, $K_M = (p_2 + p_3)/p_1$. To follow the notation of the main article we reformulate (9) as an implicit polynomial map $G : \mathbb{R}^2 \times P \rightarrow \mathbb{R}^2$ defined by

\[
G_1(x, p) = x_1^+ - x_1 - h p_1 [(x_2 - 1)x_1 + K_S x_2] \tag{9}
\]

\[
G_2(x, p) = x_2^+ - x_2 - h p_1 [(1 - x_2)x_1 + K_M x_2] \tag{10}
\]

and

\[
H_1(x, p) = x_1 \tag{11}
\]

\[
H_2(x, p) = x_2. \tag{12}
\]

Note that this reformulation is possible also for rational functions, by multiplying with the right-hand side denominator. As an example, for a Michaelis-Menten equation

\[
x_4^+ = x_4 + h \cdot \frac{v_{\text{max}} x_1}{K_M + x_1},
\]

with v_{max} being the maximum reaction rate under the quasi-steady-state assumption and K_M the Michaelis-Menten constant, a polynomial implicit formulation could be given by

\[
G(x, p) = x_4^+(K_M + x_1) - x_4(K_M + x_1) - h \cdot v_{\text{max}} \cdot x_1.
\]

As a first step for relaxing the feasibility problem into a semidefinite program, one first defines a quadratic decomposition of the monomials appearing in G. Due to several degrees of freedom, such a decomposition is not unique. A possible monomial vector ξ for our example would be

\[
\xi^T = [1, hp_1, hp_2, hp_3, x_1, x_2, h p_1 x_2, x_1^+, x_2^+].
\]

As an example of the above-mentioned degrees of freedom, an equivalent decomposition is obtained by removing the monomial $h \cdot p_1 \cdot x_2$ and including in its place the monomials $h \cdot x_1 \cdot x_2$ and h. Note that, in principle, the monomial vector could be constructed from all monomials appearing in G and H. However, this would lead to an SDP of unnecessary large size.

Given the monomial vector ξ, the polynomial maps (9),(10) can be reformulated in the quadratic form

\[
G_j = \xi^T Q_j \xi,
\]
for matrices $Q_1, Q_2 \in \mathbb{R}^{9 \times 9}$ defined by

$$
Q_1 = \begin{bmatrix}
0 & 0 & 0 & 0 & -0.5 & 0 & 0 & 0.5 & 0 \\
0 & 0 & 0 & 0 & -0.5 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -0.5 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -0.5 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -0.5 & 0 \\
-0.5 & -0.5 & 0 & 0 & 0 & 0 & -0.5 & 0 & 0 \\
0 & 0 & -0.5 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -0.5 & 0 & 0 & 0 & 0 \\
0.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
$$

and

$$
Q_2 = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & -0.5 & 0 & 0 & 0.5 \\
0 & 0 & 0 & 0 & -0.5 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0.5 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -0.5 & 0 & 0 \\
-0.5 & 0 & 0.5 & 0.5 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0.5 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -0.5 & 0 & 0 \\
0.5 & 0 & 0 & 0 & 0 & 0 & 0 & -0.5 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -0.5 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
$$

If some monomials are defined as products of lower degree monomials, as e.g. $h \cdot p_1 \cdot x_2$ then the dependencies for these monomials have to be taken into account. So for the monomial $h \cdot p_1 \cdot x_2$ one has to specify that it really is a product of the monomials $h \cdot p_1$ and x_2, which is done by means of a constraint $D\xi = 0$, for the matrix

$$
D = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0.5 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -0.5 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -0.5 & 0 & 0 & 0 & 0 & 0 \\
0.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
$$

The bounds on the parameters, states and inputs can be expressed by means of a set of linear constraints in the form $A\xi \geq 0$. For this example we consider only lower and upper bounds (intervals) given in Table 1, so that we have constraints of the type $\underline{x}_1 \leq x_1 \overline{x}_1 = 1$.

\[3\]
<table>
<thead>
<tr>
<th>Term</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>hp_1</td>
<td>$h_{p_1} = 0.33h$</td>
<td>$h_{p_1} = 3h$</td>
</tr>
<tr>
<td>hp_2</td>
<td>$h_{p_2} = 0.33h$</td>
<td>$h_{p_2} = 3h$</td>
</tr>
<tr>
<td>hp_3</td>
<td>$h_{p_3} = 0.33h$</td>
<td>$h_{p_3} = 3h$</td>
</tr>
<tr>
<td>x_1</td>
<td>$x_1 = 0$</td>
<td>$x_1 = 1$</td>
</tr>
<tr>
<td>x_2</td>
<td>$x_2 = 0$</td>
<td>$x_2 = 1$</td>
</tr>
</tbody>
</table>

Table 1: Upper and lower bounds on the states and parameters. Note that x_i^+ has the same bounds as x_i.

Therefore, the linear constraints $A\xi \geq 0$ defining the bounds are given by the matrix

$$A = \begin{bmatrix}
-h_{p_1} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
h_{p_1} & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-h_{p_2} & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
h_{p_2} & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-h_{p_3} & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
h_{p_3} & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-x_1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
x_1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
-x_2 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
x_2 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
-h_{p_1}x_2 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
h_{p_1}x_2 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
-x_1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
x_1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
-x_2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
x_2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
\end{bmatrix}$$

In a matrix representation every row corresponds to one inequality, e.g. row 7 of A corresponds to $x_1 \leq x_1$.

Redundant constraints of the form $AXA^T \geq 0$ can also be introduced to tighten the relaxation.

As a final step we define $X = \xi \cdot \xi^T$ and replace the conditions $\text{rank}(X) = 1$ and $\text{tr}(X) \geq 1$ with the weaker constraint $X \succeq 0$. Then, to certify the infeasibility of the problem, we transform the system to its Lagrangian dual (8). To do so, we need the following additional variables

$$\lambda_1 \in \mathbb{R}^{16}, \lambda_2 \in \mathbb{R}^{16 \times 16}, \lambda_3 \in \mathbb{R}^{9 \times 9}, \nu \in \mathbb{R}^4.$$

Note also that for this example, the unit vector e_1^T appearing in (8) is defined by

$$e_1^T = [1, 0, 0, 0, 0, 0, 0, 0].$$

An computational implementation of the Lagrangian dual can then be obtained with standard tools, as for
example by using YALMIP in Matlab, coupled with a semidefinite program solver as SEDUMI. The allowed error in the semidefinite program solver should be set to a sufficiently small value, so as to overcome numerical problems which may introduce wrong solutions.