Important Note: All overlapping genes from the N/H biclusters in the group factor were removed before this analysis was done

```r
> NRF <- as.data.frame(read.table("NR_data_for_R.txt", header = TRUE))## Data file with NR double mutant data (Wang et al 2004)
> NRF$Treatment <- factor(NRF$Treatment)## Defining treatment factor
> NRF$Mutant <- factor(NRF$Mutant)## Defining Genotype Factor
> NRF$Group <- factor(NRF$Group)## Defining N/H-bicluster Factor
> NRF$Tissue <- factor(NRF$Tissue)## Defining Tissue Factor
> attach(NRF)## attaching the data frame to the R workspace
> levels(Treatment)
[1] "Treated" "Control"
> levels(Mutant)
[1] "Plus" "Minus"## Plus = mutant, Minus = WT
> levels(Group)
[1] "0" "1" "16" "19" "20" ## where 1, 16, 19 and 20 corresponde to N/H ## biclusters 1, 16, 19, and 20 and 0 corresponds to N-bicluster 9 exclusive ## genes
> levels(Tissue)
[1] "Shoots" "Roots"
```

First model showing all the factors of interest for this analysis

```r
> lmout <- lm(Expression ~ Group + Treatment + Tissue + Mutant + Group:Treatment)## Defining the ANOVA model
> summary.lm(lmout)## performing ANOVA using the model defined above

### Results For First Model, note the high p-values for the tissue and mutant ## categories. The estimate is the coefficient estimate, the error is the standard error, the t-value gives the t-statistic for the null hypothesis of coef = 0 and the Pr(|t|) gives the p-value based on the t-value. Each factor level uses a baseline or control (defined as the lowest number or letter for each comparison. Interactions are over and above the main effects of the individual factors.

Call:
  lm(formula = Expression ~ Group + Treatment + Tissue + Mutant + Group:Treatment)
```

Residuals:
Second model: We simplify one step at a time in order to see the effects of removing individual factors. The mutant factor is removed because its p-value is highest.
Comparison of first and second model, showing that the new model is not significantly worse in its explanatory power than the model with additional factors (based on p-value 0.7533) and therefore the model simplification is justified

> anova(lmout, lmout1)

Analysis of Variance Table

Model 1: Expression ~ Group + Treatment + Tissue + Mutant + Group:Treatment

Model 2: Expression ~ Group + Treatment + Tissue + Group:Treatment

<table>
<thead>
<tr>
<th>Res.Df</th>
<th>RSS</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>F</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5985212769</td>
<td></td>
<td>0.0988</td>
<td>0.7533</td>
<td></td>
</tr>
</tbody>
</table>

Third model with tissue factor removed from model 2 above due to its high p-value

> lmout2 <- lm(Expression ~ Group + Treatment + Group:Treatment)

> summary.lm(lmout2)

Call:

lm(formula = Expression ~ Group + Treatment + Group:Treatment)

Residuals:

Min 1Q Median 3Q Max
-5335.6 -1291.4 -419.8 181.9 23385.8

Coefficients:

| Estimate | Std. Error | t value | Pr(>|t|) |
|-----------|------------|---------|----------|
| (Intercept) | 500.86 | 196.18 | 2.553 | 0.010860 * |
| Group1 | 1733.79 | 424.96 | 4.080 | 4.95e-05 *** |
| Group6 | 87.01 | 519.05 | 0.168 | 0.866916 |
| Group16 | 760.43 | 519.05 | 1.465 | 0.143298 |
| Group19 | 681.63 | 402.05 | 1.695 | 0.090387 . |
| Group20 | 910.45 | 454.35 | 2.004 | 0.045416 * |
| N-Treatment | 1376.46 | 277.44 | 4.961 | 8.54e-07 *** |
| Group1:N-Treatment | 2103.86 | 600.99 | 3.501 | 0.000489 *** |
| Group6:N-Treatment | -604.19 | 734.05 | -0.823 | 0.410695 |
| Group16:N-Treatment | 990.19 | 734.05 | 1.349 | 0.177731 |
| Group19:N-Treatment | 1089.91 | 568.59 | 1.917 | 0.055606 . |
| Group20:N-Treatment | 654.50 | 642.55 | 1.019 | 0.308695 |
Based on ANOVA results the model simplification seems justified. Model simplification is continued combining factor levels in the N/H bicluster factor begins to see if the model can be further simplified by removing factor levels with high p-values.

```r
> levels(Group)
[1] "0" "1" "6" "16" "19" "20"
> GroupA=Group## defining a new N/H bicluster group factor levels by merging levels that are not significantly different from each other. We begin by joining levels 0 and 6 of the group factor to form level 06.
> levels(GroupA)[3]="0.6"## setting N/H bicluster 6 to the baseline as it is most similar to the N-bicluster 9 exclusive
> levels(GroupA)##new levels for the group
[1] "0.6" "1" "16" "19" "20"
```

Fourth ANOVA model using revised N/H bicluster factor group factor levels. Some N/H biclusters are still not shown to be significant

```r
> lmout3<-lm(Expression~GroupA+Treatment+GroupA:Treatment)
> summary.lm(lmout3)
```

Call:
`lm(formula = Expression ~ GroupA + Treatment + GroupA:Treatment)`

Residuals:
```
     Min      1Q  Median      3Q     Max
-5335.6 -1282.0  -426.9  176.1 23459.7
```

Coefficients:
```
            Estimate Std. Error t value Pr(>|t|)
(Intercept)     513.3      181.5   2.828 0.004803 **
GroupA1         1721.4      418.2   4.116 4.24e-05 ***
GroupA16        748.0      513.4   1.457 0.145530
GroupA19        669.2      394.9   1.695 0.090546 .
GroupA20        898.0      448.0   2.005 0.045339 *
N-Treatment     1290.1      256.7   5.026 6.17e-07 ***
GroupA1:N-Treatment 2190.2      591.4   3.703 0.000227 ***
GroupA16:N-Treatment 1076.5     726.1   1.483 0.138563
GroupA19:N-Treatment 1176.2     558.5   2.106 0.035507 *
GroupA20:N-Treatment   740.8     633.5   1.169 0.242624
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2717 on 814 degrees of freedom
Multiple R-Squared: 0.2137, Adjusted R-squared: 0.205
F-statistic: 24.58 on 9 and 814 DF, p-value: < 2.2e-16
Comparison of ANOVA models, showing that the new model is not significantly worse in its explanatory power than the model with additional factors (based on p-value 0.6004) and therefore the model simplification is justified.

```
> anova(lmout2, lmout3)
Analysis of Variance Table

Model 1: Expression ~ Group + Treatment + Group:Treatment
Model 2: Expression ~ GroupA + Treatment + GroupA:Treatment

Res.Df RSS Df  Sum of Sq     F Pr(>F)
1    812 600347497
2    814 6007891685 -2  -7544188 0.5105 0.6004
```

Further model simplification of the N/H biclusters with N/H biclusters 16 and 19 combined because their estimated main effects are close to each other compared to the standard error of their means.

```
> levels(GroupA)
[1] "0.6" "1" "16" "19" "20"
> GroupB=GroupA
> levels(GroupB)
[1] "0.6" "1" "1619" "20"
> levels(GroupB)[3:4]="1619"
> levels(GroupB)
[1] "0.6" "1" "1619" "20"
```

Fifth ANOVA model with second revision of N/H bicluster factor. This model shows a statistically significant difference between all comparisons except for N/H bicluster 20 given nitrate treatment.

```
> lmout4<-lm(Expression~GroupB+Treatment+GroupB:Treatment)
> summary.lm(lmout4)
Call:
  lm(formula = Expression ~ GroupB + Treatment + GroupB:Treatment)

Residuals:
    Min     1Q Median     3Q    Max
-5335.6 -1282.0  -422.0   176.1  23459.7

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept)  513.3     181.3   2.831  0.004752 **
GroupB1    1721.4     417.7   4.121  4.15e-05 ***
GroupB1619  696.6     336.0   2.073  0.038466 *
GroupB20    898.0     447.4   2.007  0.045078 *
N-Treatment 1290.1     256.4   5.032  5.98e-07 ***
GroupB1:N-Treatment 2190.2     590.7   4.121  4.15e-05 ***
GroupB1619:N-Treatment 1141.5     475.2   2.402  0.016515 *
GroupB20:N-Treatment 740.8     632.8   1.171  0.242051
---
Signif. codes:  0 '****' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```
Residual standard error: 2713 on 816 degrees of freedom
Multiple R-Squared: 0.2137, Adjusted R-squared: 0.2069
F-statistic: 31.68 on 7 and 816 DF, p-value: < 2.2e-16

##Comparison of ANOVA models for the two different versions of N/H bicluster ##factor showing that the new model is not significantly worse in its ##explanatory power than the model with additional factors (based on p-value ##0.9906) and therefore the model simplification is justified

> anova(lmout3, lmout4)

Analysis of Variance Table

Model 1: Expression ~ GroupA + Treatment + GroupA:Treatment
Model 2: Expression ~ GroupB + Treatment + GroupB:Treatment

<table>
<thead>
<tr>
<th>Res.Df</th>
<th>RSS</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>F</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>814</td>
<td>6007891685</td>
<td>7</td>
<td>138706</td>
<td>94</td>
<td>0.9906</td>
</tr>
</tbody>
</table>

##Further model simplification combining group factor levels for N/H bicluster 20 with N/H biclusters 16 and 19

> GroupC=GroupB ## redefining a new N/H bicluster factor level
> levels(GroupC)## showing levels of new N/H bicluster factor level

[1] "0.6" "1" "16.19.20" "20"
> levels(GroupC)[3:4]="16.19.20"## combining N/H bicluster 20 with 16 and 19
> levels(GroupC)

[1] "0.6" "1" "16.19.20"

##Sixth ANOVA model with revised N/H bicluster factor level, this is the ##final model as further simplification did not seem necessary given the ##results

> lmout5<-lm(Expression~GroupC+Treatment+GroupC:Treatment)
> summary.lm(lmout5)

Call:
 lm(formula = Expression ~ GroupC + Treatment + GroupC:Treatment)

Residuals:
 Min 1Q Median 3Q Max
-5335.6 -1245.3 -433.3 156.5 23459.7

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 513.3 181.1 2.834 0.00471 **
GroupC1 1721.4 417.3 4.125 4.08e-05 ***
GroupC16.19.20 761.8 294.7 2.585 0.00990 **
GroupC1:N-Treatment 1290.1 256.1 5.037 5.82e-07 ***
GroupC1:N-Treatment:16.19.20 2190.2 590.1 3.712 0.00022 **
GroupC16.19.20:N-Treatment 1011.9 416.7 2.428 0.01539 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2711 on 818 degrees of freedom
Multiple R-Squared: 0.2134, Adjusted R-squared: 0.2086
F-statistic: 44.37 on 5 and 818 DF, p-value: < 2.2e-16

> anova(lmout4, lmout5)## comparison of the final model with the
previous model showing that the new model is not significantly worse in
its explanatory power than the model with additional factors (based on
p-value 0.8502) and therefore the model simplification is justified

Analysis of Variance Table

Model 1: Expression ~ GroupB + Treatment + GroupB:Treatment
Model 2: Expression ~ GroupC + Treatment + GroupC:Treatment

<table>
<thead>
<tr>
<th>Res.Df</th>
<th>RSS</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>F</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6008030390</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6010420271</td>
<td>-2</td>
<td>-2389881</td>
<td>0.1623</td>
<td>0.8502</td>
</tr>
</tbody>
</table>

The final model here has the greatest explanatory power with all
factors and #factor levels called significant. Therefore this model
is the simplest model that can be derived from the initial model.