Listing 1 – entropy.m

```matlab
function H = entropy(g, D, c, E)
% Computes the normalized conditional entropy with respect to phenotype.
% g - the gene indices.
% D - the cutoff distance.
% c - the phenotype indicator, a Nx1 matrix. 1 - Case, 0 - Control.
% E - the expression data itself, an MxN matrix, M is the # of genes.

K = length(c);     %number of tissues, in our case K=102
q = sum(c)/K;     %Prob(cancer)
Hnorm = -q*log2(q)-(1-q)*log2(1-q);  %so we normalize H later
n = length(g);
F=[];

for i=1:n
    F=[F E(g(i),:)'];  %create a K by n matrix for selected genes
end

dist=pdist(F,'chebychev'); %find all pairwise distances
tree=linkage(dist,'average'); %create the cluster tree
%dendrogram(tree,0); %if we wish to plot the tree
numunder = sum(tree(:,3)<D);%the number of intermediate nodes under D

%H entropy evaluation
Hcumm = 0;
for iunder = 1:numunder
    cutoff=tree(iunder,3)+0.000001;
    %construct the clusters from the tree
    T=cluster(tree,'cutoff',cutoff,'criterion','distance');
    H=0;
    for i=max(T) %max(T) is the number of clusters
        setx = (T==i);
        numc = sum(c(setx)==1);
        numh = sum(c(setx)==0);
        p = numc/(numc+numh);
        if p~=0 && p~=1
            H=H-((p*log2(p)+(1-p)*log2(1-p))]*(numc+numh)/K;
        end
    end
    H=H/Hnorm;
    if iunder<numunder
        Hcumm=Hcumm+H*(tree(iunder+1,3)-tree(iunder,3));
    else
        Hcumm=Hcumm+H*(D-tree(iunder,3));
    end
end
H=Hcumm/D;
```

Additional file 3

MATLAB Scripts (require MATLAB Bioinformatics & Statistics Toolboxes)
Listing 2 – synergy.m

function S = synergy(g, D, c, E)
 % Computes the normalized synergy of two genes with respect to
 % phenotype.
 % g - the gene indices, must be a 1x2 matrix.
 % D - the cutoff distance.
 % c - the phenotype indicator, a Nx1 matrix. 1 - Case, 0 - Control.
 % E - the expression data itself, a MxN matrix, M is the number of
 % genes.
 n = length(g);
 if (n ~= 2)
 error('Must supply a 1x2 matrix of genes.');
 else
 g1 = g(1);
 g2 = g(2);
 % Compute H(C|G1) normalized by H(C)
 H1 = entropy(g1, D, c, E);
 % Compute H(C|G2) normalized by H(C)
 H2 = entropy(g2, D, c, E);
 % Compute H(C|G1,G2) normalized by H(C)
 H12 = entropy(g, D, c, E);
 % Now compute normalized synergy (all terms are normalized by H(C))
 % Synergy = H(C|G1) + H(C|G2) - H(C|G1,G2) - H(C)
 S = H1 + H2 - H12 - 1;
 end