Algorithm 1 MMMvII(G = (V, E), α)

1: maxMatches = ∅
2: maxMatchSize = 0
3: δ = (1 + α)/(1 − α)
4: for all v_i ∈ V do
5: {Build list of v_i’s neighbours sorted by RPD of their edge to v_i}
6: L = \{l_a ∈ V : (v_i, l_a) ∈ E, R(v_i)(l_a) ≤ R(v_i)(l_{a+1})\}
7: for a = 1 to |L| do
8: v_j = l_a
9: if j < i then {Avoids visiting an edge twice}
10: next a
11: end if
12: \(e_{min} = (v_i, v_j)\) {Assume an edge of minimum RPD}
13: H = (U, F) = (∅, ∅)
14: {Build vertex set U of subgraph H}
15: for b = a + 1 to |L| do {For all vertices ahead of v_j in list L}
16: v_k = l_b
17: \(e_{ik} = (v_i, v_k)\)
18: \(e_{jk} = (v_j, v_k)\)
19: if R(\(e_{ik}\)) ≥ R(\(e_{min}\)) · δ then
20: {If \(e_{ik}\) is not compatible with \(e_{min}\), then this and all further v_k are guaranteed to fail checks}
21: break
22: else if R(\(e_{jk}\)) = R(\(e_{min}\)) and k < i then
23: next b {Avoids duplicate results}
24: else if R(\(e_{min}\)) ≤ R(\(e_{jk}\)) ≤ R(\(e_{min}\)) · δ then
25: \{Both \(e_{jk}\) and \(e_{ik}\) are forward-compatible with \(e_{min}\) – include v_k in U\}
26: U = U ∪ \{v_k\}
27: end if
28: end for
29: {Build edge set F of subgraph H}
30: for all \(e_{xy} = (v_x, v_y)\) ∈ U × U with y > x do {For all pairs of vertices in U}
31: if R(\(e_{xy}\)) = R(\(e_{min}\)) and \(x < i \text{ or } y < i\) then
32: next \(e_{xy}\)
33: else if R(\(e_{min}\)) ≤ R(\(e_{xy}\)) ≤ R(\(e_{min}\)) · δ then
34: F = F ∪ \{e_{xy}\}
35: end if
36: end for
37: M = maxClique(H) {Maximum cliques of H are its largest matches}
38: for all m ∈ M do
39: m = m ∪ \{v_i, v_j\}
40: if \(|m| > \text{maxMatchSize}\) then {Keep only the globally largest matches}
41: maxMatchSize = |m|
42: maxMatches = \{m\}
43: else if \(|m| = \text{maxMatchSize}\) then
44: maxMatches = maxMatches ∪ \{m\}
45: end if
46: end for
47: end for
48: end for
49: return \{maxMatches, maxMatchSize\}
Procedure 1 Ostergard($G = (V, E)$)

1: $\omega \leftarrow 0$ // Initialize max clique size
2: $Q \leftarrow \emptyset$ // Initialize set of max cliques
3: for $i = |V|$ to 1 do // Go through vertices in reverse order
4: $U \leftarrow \emptyset$ // Build a list of v_i’s neighbours
5: for $j = i + 1$ to $|V|$ do
6: if $(v_i, v_j) \in E$ then
7: $U \leftarrow U \cup \{v_j\}$
8: end if
9: end for
10: OstergardRecursive($\{v_i\}$, U) // Recursively expand the clique
11: $c[v_i] \leftarrow \omega$ // Max clique size for subproblem starting at v_i
12: end for
13: return $\{Q, \omega\}$
Procedure 2 OstergardRecursive(q, U)

1: if $U = \emptyset$ then
2: if $|q| > \omega$ then // Found new largest clique?
3: $\omega \leftarrow |q|$
4: $Q \leftarrow \{q\}$
5: else if $|q| = \omega$ then // Modification to record all max cliques
6: $Q \leftarrow Q \cup \{q\}$
7: end if
8: else
9: while $U \neq \emptyset$ do
10: if $|q| + |U| < \omega$ then // Bound based on remaining vertices
11: return
12: end if
13: $i \leftarrow \min \{j : u_j \in U\}$
14: if $|q| + c[u_i] < \omega$ then // Bound based on previous subproblems
15: return
16: end if
17: $U \leftarrow U \setminus \{u_i\}$
18: $U' \leftarrow \{u' \in U : (u_i, u') \in E\}$
19: OstergardRecursive($q \cup \{u_i\}, U'$) // Unmodified Ostergard also returns here if Line 2 was true in this or any child recursive iterations. Since we must find all max cliques, this early exit does not apply.
20: end while
21: end if