ALPHA: LP-SLGN formulation based on a positive class of linear functions

Goodness of Fit
(Total square deviation of points from line)
$R^2 = 10.6495$
$\alpha = 1.9060$

Degree (k)

$P(k) = \text{Number of nodes with degree } k$

ALPHA: LP-SLGN formulation based on a general class of linear functions

Goodness of Fit
(Total square deviation of points from line)
$R^2 = 92.6949$
$\alpha = 2.8640$

Degree (k)

$P(k) = \text{Number of nodes with degree } k$

COCO: LP-SLGN formulation based on a positive class of functions

Goodness of Fit
(Total square deviation of points from line)
$R^2 = 97.5562$
$\alpha = 3.0459$

Degree (k)

$P(k) = \text{Number of nodes with degree } k$

COCO: LP-SLGN formulation based on a general class of linear functions

Goodness of Fit
(Total square deviation of points from line)
$R^2 = 54.9181$
$\alpha = 1.9402$

Degree (k)

$P(k) = \text{Number of nodes with degree } k$