The EM Algorithms

Estimating Haplotype Frequencies

Based on likelihood (8), the EM algorithm is derived to estimate haplotype frequencies. In the E step, calculate the proportions of a particular diplotype within double or triple heterozygous genotypes in the population of sex s by

\[
\phi_1^s = \frac{p_{111}^s p_{100}^s}{p_{111}^s p_{100}^s + p_{101}^s p_{110}^s}, \quad \bar{\phi}_1^s = 1 - \phi_1^s \quad \text{for genotype 11/10/10}
\]

\[
\phi_2^s = \frac{p_{111}^s p_{010}^s}{p_{111}^s p_{010}^s + p_{011}^s p_{110}^s}, \quad \bar{\phi}_2^s = 1 - \phi_2^s \quad \text{for genotype 10/11/10}
\]

\[
\phi_3^s = \frac{p_{111}^s p_{001}^s}{p_{111}^s p_{001}^s + p_{101}^s p_{011}^s}, \quad \bar{\phi}_3^s = 1 - \phi_3^s \quad \text{for genotype 10/10/11}
\]

\[
\begin{align*}
\phi_4^s &= \frac{p_{111}^s p_{000}^s}{p_{111}^s p_{000}^s + p_{101}^s p_{010}^s + p_{110}^s p_{001}^s + p_{100}^s p_{011}^s} \\
\bar{\phi}_4^s &= \frac{p_{101}^s p_{010}^s}{p_{111}^s p_{000}^s + p_{101}^s p_{010}^s + p_{110}^s p_{001}^s + p_{100}^s p_{011}^s} & \text{for genotype 10/10/10} \\
\phi_5^s &= \frac{p_{110}^s p_{000}^s}{p_{110}^s p_{000}^s + p_{111}^s p_{001}^s + p_{101}^s p_{010}^s + p_{110}^s p_{001}^s + p_{100}^s p_{011}^s} \\
\bar{\phi}_5^s &= 1 - \phi_5^s & \text{for genotype 10/10/00} \\
\phi_6^s &= \frac{p_{101}^s p_{000}^s}{p_{101}^s p_{000}^s + p_{001}^s p_{100}^s}, \quad \bar{\phi}_6^s = 1 - \phi_6^s & \text{for genotype 10/00/10} \\
\phi_7^s &= \frac{p_{011}^s p_{000}^s}{p_{011}^s p_{000}^s + p_{001}^s p_{100}^s}, \quad \bar{\phi}_7^s = 1 - \phi_7^s & \text{for genotype 00/10/10}
\end{align*}
\]

In the M step, estimate the haplotype frequencies with the calculated relative proportions
by

\[
\hat{p}_{111} = \frac{1}{2n}(2n_{11/11} + n_{11/11/10} + n_{11/10/11} + n_{10/11/11} + \phi_1 n_{11/10/10} + \phi_2 n_{11/10/11} + \phi_3 n_{10/10/10} + \phi_4 n_{10/10/10} + \phi_5 n_{1/1/10})
\]

\[
\hat{p}^s_{110} = \frac{1}{2n}(2n_{11/11/10} + n_{11/11/10} + n_{11/10/10} + n_{10/11/10} + \phi_1 n_{11/10/10} + \phi_2 n_{11/10/10} + \phi_3 n_{10/10/10} + \phi_4 n_{10/10/10} + \phi_5 n_{1/1/10})
\]

\[
\hat{p}^s_{110} = \frac{1}{2n}(2n_{11/11/10} + n_{11/11/10} + n_{11/10/10} + n_{10/11/10} + \phi_1 n_{11/10/10} + \phi_2 n_{11/10/10} + \phi_3 n_{10/10/10} + \phi_4 n_{10/10/10} + \phi_5 n_{1/1/10})
\]

\[
\hat{p}^s_{100} = \frac{1}{2n}(2n_{11/10/10} + n_{11/10/10} + n_{11/10/10} + n_{10/10/10} + \phi_1 n_{11/10/10} + \phi_2 n_{11/10/10} + \phi_3 n_{10/10/10} + \phi_4 n_{10/10/10} + \phi_5 n_{1/1/10})
\]

\[
\hat{p}^s_{011} = \frac{1}{2n}(2n_{10/11/11} + n_{10/11/11} + n_{10/11/11} + n_{10/11/10} + \phi_1 n_{11/10/10} + \phi_2 n_{11/10/11} + \phi_3 n_{10/10/11} + \phi_4 n_{10/10/11} + \phi_5 n_{1/1/11})
\]

\[
\hat{p}^s_{010} = \frac{1}{2n}(2n_{10/11/10} + n_{10/11/10} + n_{10/11/10} + n_{10/10/10} + \phi_1 n_{11/10/10} + \phi_2 n_{11/10/10} + \phi_3 n_{10/10/10} + \phi_4 n_{10/10/10} + \phi_5 n_{1/1/10})
\]

\[
\hat{p}^s_{001} = \frac{1}{2n}(2n_{10/00/11} + n_{10/00/11} + n_{10/00/11} + n_{10/00/10} + \phi_1 n_{11/10/10} + \phi_2 n_{11/10/10} + \phi_3 n_{10/10/10} + \phi_4 n_{10/10/10} + \phi_5 n_{1/1/10})
\]

\[
\hat{p}^s_{000} = \frac{1}{2n}(2n_{10/00/10} + n_{10/00/10} + n_{10/00/10} + n_{10/00/00} + \phi_1 n_{11/10/10} + \phi_2 n_{11/10/10} + \phi_3 n_{10/10/10} + \phi_4 n_{10/10/10} + \phi_5 n_{1/1/10})
\]

The E and M steps are iterated until the estimates of haplotype frequencies are stable.

Estimating Quantitative Genetic Parameters

Based on likelihood (9), the EM algorithm is derived to estimate the genetic values of composite diplotypes and residual variance. In the E step, calculate the posterior probabilities with which a double or triple heterozygous subject \(i \) is a particular diplotype, expressed
In the M step, estimate the quantitative genetic parameters, Ω_q, with the calculated
posterior probabilities by

\[\mu_{11} = \frac{\sum_{i=1}^{n_{11/11}} y_i}{n_{11/11}}. \]

\[\mu_{10} = \sum_{i=1}^{n_{11/11}} \Psi_{11}^{10} y_i + \sum_{i=1}^{n_{11/10/11}} \Psi_{12}^{10} y_i + \sum_{i=1}^{n_{11/10/10}} \Psi_{13}^{10} y_i + \sum_{i=1}^{n_{10/11/11}} \Psi_{14}^{10} y_i + \sum_{i=1}^{n_{10/11/10}} \Psi_{15}^{10} y_i + \sum_{i=1}^{n_{10/10/11}} \Psi_{16}^{10} y_i + \sum_{i=1}^{n_{10/10/10}} \Psi_{17}^{10} y_i \]

\[\mu_{01} = \sum_{i=1}^{n_{11/11}} \Psi_{11}^{01} y_i + \sum_{i=1}^{n_{11/10/11}} \Psi_{12}^{01} y_i + \sum_{i=1}^{n_{11/10/10}} \Psi_{13}^{01} y_i + \sum_{i=1}^{n_{10/11/11}} \Psi_{14}^{01} y_i + \sum_{i=1}^{n_{10/11/10}} \Psi_{15}^{01} y_i + \sum_{i=1}^{n_{10/10/11}} \Psi_{16}^{01} y_i + \sum_{i=1}^{n_{10/10/10}} \Psi_{17}^{01} y_i \]

\[\mu_{00} = \sum_{i=1}^{m} y_i + \sum_{i=1}^{n_{11/10/10}} \Psi_{11}^{00} y_i + \sum_{i=1}^{n_{11/10/10}} \Psi_{12}^{00} y_i + \sum_{i=1}^{n_{11/10/10}} \Psi_{13}^{00} y_i + \sum_{i=1}^{n_{11/10/10}} \Psi_{14}^{00} y_i + \sum_{i=1}^{n_{11/10/10}} \Psi_{15}^{00} y_i + \sum_{i=1}^{n_{11/10/10}} \Psi_{16}^{00} y_i + \sum_{i=1}^{n_{11/10/10}} \Psi_{17}^{00} y_i \]

\[\sigma^2 = \frac{1}{n} \left[\sum_{i=1}^{n_{11/11}} (y_i - \mu_{11})^2 + \sum_{i=1}^{n_{11/10/11}} (y_i - \mu_{10})^2 + \sum_{i=1}^{n_{11/10/10}} (y_i - \mu_{10})^2 + \sum_{i=1}^{n_{10/11/11}} (y_i - \mu_{11})^2 + \sum_{i=1}^{n_{10/11/10}} (y_i - \mu_{10})^2 + \sum_{i=1}^{n_{10/10/11}} (y_i - \mu_{10})^2 + \sum_{i=1}^{n_{10/10/10}} (y_i - \mu_{10})^2 + \sum_{i=1}^{n_{10/11/11}} (y_i - \mu_{11})^2 + \sum_{i=1}^{n_{10/11/10}} (y_i - \mu_{10})^2 + \sum_{i=1}^{n_{10/10/11}} (y_i - \mu_{10})^2 + \sum_{i=1}^{n_{10/10/10}} (y_i - \mu_{10})^2 + \sum_{i=1}^{n_{10/11/11}} (y_i - \mu_{11})^2 + \sum_{i=1}^{n_{10/11/10}} (y_i - \mu_{10})^2 + \sum_{i=1}^{n_{10/10/11}} (y_i - \mu_{10})^2 + \sum_{i=1}^{n_{10/10/10}} (y_i - \mu_{10})^2 + \sum_{i=1}^{n_{10/11/11}} (y_i - \mu_{11})^2 + \sum_{i=1}^{n_{10/11/10}} (y_i - \mu_{10})^2 + \sum_{i=1}^{n_{10/10/11}} (y_i - \mu_{10})^2 + \sum_{i=1}^{n_{10/10/10}} (y_i - \mu_{10})^2 + \sum_{i=1}^{n_{10/11/11}} (y_i - \mu_{11})^2 + \sum_{i=1}^{n_{10/11/10}} (y_i - \mu_{10})^2 + \sum_{i=1}^{n_{10/10/11}} (y_i - \mu_{10})^2 + \sum_{i=1}^{n_{10/10/10}} (y_i - \mu_{10})^2 + \sum_{i=1}^{n_{10/11/11}} (y_i - \mu_{11})^2 + \sum_{i=1}^{n_{10/11/10}} (y_i - \mu_{10})^2 + \sum_{i=1}^{n_{10/10/11}} (y_i - \mu_{10})^2 + \sum_{i=1}^{n_{10/10/10}} (y_i - \mu_{10})^2 \right] \]

The E and M steps are iterated until the estimates of haplotype frequencies are stable.