Step 0 (Initialization):
\(D \) = the set of the documents to be clustered
\(D_m \) = the set of documents in \(D \) indexed with a given MeSH term \(m \) (for each \(m \) in \(M \))
\(N_m \) = the number of documents in \(D \) indexed with a given MeSH term \(m \) (for each \(m \) in \(M \))
\(M \) = the set of MeSH terms collected from all documents in \(D \) (after removing the terms that are given on a stoplist of the top 20 most frequent in MEDLINE, and removing each term \(m \) for which the relative document frequency \(|D_m|/|D| \) is > 1/3)
\(i = 0 \) (cluster number)

Step 1 (Iterations):
\[\text{WHILE } (i = i + 1 < 15 \text{ and } M \neq \emptyset) \{ \]
\(L_i = m \) in \(M \): \(N_m \geq N_n \) for all \(n \) in \(M \) (identifies the label for the \(i \)-th cluster)
\(C_i = D_m \) (assigns a set of papers to the \(i \)-th cluster \(C_i \))
\(D = D - D_m \) (removes the papers in the \(i \)-th cluster from being considered for the potential “Miscellaneous” cluster, and from contributing to the counts of the remaining MeSH terms)
\(N_n = \text{number of remaining documents in } D \text{ with a given MeSH term } n \) (for each \(n \) in \(M \))
\(M = M - m \) and its children* (removes the \(i \)-th cluster label and its children from further consideration)
\[\}
\] IF (\(D \neq \emptyset \)) {
\(i = i + 1 \)
\(L_i = \text{“Miscellaneous”} \)
\(C_i = D \)
}\n\(n = i \)

Step 2 (Output Clusters): List of cluster labels \(L_i \)'s each with a corresponding set of documents \(C_i \)'s for \(i = 1, 2, \ldots, n \), displayed in order of decreasing size of the document clusters.

*Given two MeSH terms \(m \) and \(n \), \(m \) is considered a child of \(n \) if \(m \) occurs below \(n \) in the MeSH hierarchy.

Notice that the counts (\(N_m \)'s) are reduced during the execution of the WHILE loop, whereas the document sets (\(D_m \)'s) stay the same. Thus, each document may be assigned to multiple clusters because cluster labels are chosen based on the counts (\(N_m \)'s) and the clusters are based on document sets (\(D_m \)'s).