Input: A graph \(G(V,E) \) with source node \(start \) and goal node \(end \).

Output: Least cost path from \(start \) to \(end \).

Steps:

Initialise

\[
\text{open_list} = \{ \text{start} \} \quad \text{/* List of nodes to be traversed*/}
\]

\[
\text{closed_list} = \{ \} \quad \text{/* List of already traversed nodes*/}
\]

\[
g(\text{start}) = 0 \quad \text{/* Cost from source node to a node*/}
\]

\[
h(\text{start}) = \text{heuristic_function} (\text{start, end}) \quad \text{/* Estimated cost from node to goal node*/}
\]

\[
f(\text{start}) = g(\text{start}) + h(\text{start}) \quad \text{/* Total cost from source to goal node*/}
\]

while \(\text{open_list} \) is not empty

\[
m = \text{Node on top of open_list}, \text{ with least } f
\]

if \(m = = \text{end} \)

 return

remove \(m \) from \(\text{open_list} \)

add \(m \) to \(\text{closed_list} \)

for each \(n \) in \(\text{child}(m) \)

 if \(n \) in \(\text{closed_list} \)

 continue

 \[
 \text{cost} = g(m) + \text{distance}(m,n)
 \]

 if \(n \) in \(\text{open_list} \) and \(\text{cost} < g(n) \)

 remove \(n \) from \(\text{open_list} \) as new path is better

 if \(n \) in \(\text{closed_list} \) and \(\text{cost} < g(n) \)

 remove \(n \) from \(\text{closed_list} \)

 if \(n \) not in \(\text{open_list} \) and \(n \) not in \(\text{closed_list} \)

 add \(n \) to \(\text{open_list} \)

 \[
g(n) = \text{cost}
 \]

 \[
h(n) = \text{heuristic_function}(n, \text{end})
 \]

 \[
f(n) = g(n) + h(n)
 \]

return failure