<table>
<thead>
<tr>
<th>Control strategies for robot-assisted therapy</th>
<th>Examples for upper extremity</th>
<th>Examples for lower extremity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assistance Strategies</td>
<td>Position control</td>
<td>[17,18,20–22,24,25,34,45,51–70]</td>
</tr>
<tr>
<td>Impedance-based channel</td>
<td>[17,18,56,80–82]</td>
<td>[9]</td>
</tr>
<tr>
<td>Velocity-field channel</td>
<td>[71]</td>
<td>[77]</td>
</tr>
<tr>
<td>Moving back wall</td>
<td>[45,50,55]</td>
<td>[71]</td>
</tr>
<tr>
<td>• Make task safer to allow practice</td>
<td>Passive gravity counterbalancing</td>
<td>[17,33,88,89]</td>
</tr>
<tr>
<td>• Enhance somatosensory input in a way correlated with motor output</td>
<td>Active weight compensation</td>
<td>[18,92–94]</td>
</tr>
<tr>
<td>• Increase task success to motivate practice</td>
<td>Counterpoise control</td>
<td>[23,96]</td>
</tr>
<tr>
<td>• Provide appropriate challenge point for optimal learning</td>
<td>EMG-triggered impedance</td>
<td>[19,25,55,87]</td>
</tr>
<tr>
<td>• Reinforce normative sensory-motor pathways</td>
<td>force proportional to EMG</td>
<td>[97–99]</td>
</tr>
<tr>
<td>Counterbalance-based</td>
<td>Modulate stiffness</td>
<td>[55,94]</td>
</tr>
<tr>
<td></td>
<td>Modulate desired movement time</td>
<td>[55]</td>
</tr>
<tr>
<td></td>
<td>Modulate desired movement path</td>
<td>[50]</td>
</tr>
<tr>
<td>Performance-based</td>
<td>Modulate assistance force</td>
<td>[46]</td>
</tr>
<tr>
<td>adaptive assistance</td>
<td>Learn static model of weakness</td>
<td>[50]</td>
</tr>
<tr>
<td></td>
<td>Adjust unstable force field gain</td>
<td>[110]</td>
</tr>
<tr>
<td>• Allow more repetitions, since participant completes movements more efficiently</td>
<td>Minimize sum of error and effort</td>
<td>...</td>
</tr>
</tbody>
</table>

Challenge-Based Strategies	Resistance	Constant resistance	[33, 58–60, 81, 108, 123–126, 163]
	Viscous resistance	[45]	[127]
	Cancel gravity only as needed	[50,92–94,128]	[9]
• Increase neural and muscle plasticity by increasing activation and force	Resist asymmetric movements	...	[131]
	Resist movement of unimpaired arm	[130]	...
	Halt movement if off-axis forces are large	[96,102,113]	...
• Discourage abnormal movements or disuse of impaired limb	Increase kinematic error	[133]	[132]
	Amplify visual representation of error	[135–137]	...
	Increase limb phasing error	...	[134]

| **Haptic Simulation Strategies** | Simulate interaction with physical objects | [17, 18, 21, 63, 64, 138–144] | [15,78,145,146,172] |
| | Robotically present real objects for manipulation | [4,5] | ... |

| **Embodied Coaching Strategies** | Mobile robot gives instructions based on monitored movement | [3] |