Supplementary Figure 1. Decline in motor performance during ALS progression correlates with lumbar motor neuron loss in the lumbar spinal cord of hSOD1G93A mice.

A shows significant weight loss of hSOD1G93A mice when compared to wild type (WT) control mice at 140 days of age (arrow, \(n = 12\), * \(P < 0.05\), # \(P < 0.001\), student \(t\)-test). B and C show significant reduction in time spent on rota-rod and hind-limb grip strength for hSOD1G93A versus WT mice, at 119 days and 70 days respectively (arrows, \(n = 12\), * \(P < 0.05\), + \(P < 0.01\), # \(P < 0.001\), student \(t\)-test). D shows lumbar motor neuron loss in hSOD1G93A mice when compared to WT control mice at 70 days of age onwards (\(n = 6\), *** \(P < 0.001\), student \(t\)-test). The decline in motor neuron number at 70 days correlates with the onset of loss of hind limb muscle strength at this same age (C). Data are expressed as mean ± SEM. PS = pre-symptomatic (30 days postnatal [P30]); OS = onset (70 days postnatal [P70]); MS = mid-symptomatic (130 days postnatal [P130]) and ES = end-stage (175 days postnatal [P175]).